AI Article Synopsis

  • The study explored how Alzheimer's patients and healthy individuals associate faces with emotionally charged biographical information.
  • Both groups adjusted their ratings of neutral faces based on the emotional content presented, but only healthy participants could remember the details later.
  • Alzheimer's patients showed heart rate changes in response to emotional ratings, indicating they might still process emotions effectively, even with memory impairments.

Article Abstract

We examined the association of faces with biographical information that varied in emotional content in patients with Alzheimer's disease and a healthy control group. During two experimental sessions, participants rated neutral male faces on dimensions of hedonic valence and emotional arousal, later paired with fictitious biographical information. Both groups changed their ratings of the faces according to the biographical content. Free recall and recognition were tested in the second session. Patients neither recalled the biographical information nor recognized the faces, whereas the controls did. In addition, psychophysiological measures were taken in response to the face stimuli. Patients showed significant heart rate modulation as a function of their emotion ratings, whereas the controls did not. No correlation of rating changes with skin conductance was found in any group. Results suggest that psychophysiological reactions such as heart rate changes may indicate preserved affective associative learning in dementia patients despite impaired explicit memory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310048PMC
http://dx.doi.org/10.1155/2012/672927DOI Listing

Publication Analysis

Top Keywords

dementia patients
8
faces biographical
8
heart rate
8
patients
5
affective learning
4
learning psychophysiological
4
psychophysiological reactivity
4
reactivity dementia
4
patients examined
4
examined association
4

Similar Publications

The MIR-NAT MAPT-AS1 does not regulate Tau expression in human neurons.

PLoS One

January 2025

Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.

The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy: one single entity?

Curr Opin Neurol

February 2025

Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.

Purpose Of Review: Cerebral amyloid angiopathy (CAA) is a common brain disorder among the elderly and individuals with Alzheimer's disease, where accumulation of amyloid-ß can lead to intracerebral hemorrhage and dementia. This review discusses recent developments in understanding the pathophysiology and phenotypes of CAA.

Recent Findings: CAA has a long preclinical phase starting decades before symptoms emerge.

View Article and Find Full Text PDF

Background: Mitochondrial function influences Parkinson's disease (PD) through the accumulation of pathogenic alpha-synuclein, oxidative stress, impaired autophagy, and neuroinflammation. The mitochondrial DNA copy number (mtDNA-CN), representing the number of mitochondrial DNA copies within a cell, serves as an easily assessable proxy for mitochondrial function.

Objective: This study aimed to assess the diagnostic and prognostic capabilities of mtDNA-CN in PD.

View Article and Find Full Text PDF

Introduction: Corneal confocal microscopy (CCM) detects neurodegeneration in mild cognitive impairment (MCI) and dementia and identifies subjects with MCI who develop dementia. This study assessed whether abnormalities in corneal endothelial cell (CEC) morphology are related to corneal nerve morphology, brain volumetry, cerebral ischemia, and cognitive impairment in MCI and dementia.

Methods: Participants with no cognitive impairment (NCI), MCI, and dementia underwent CCM to quantify corneal endothelial cell density (CECD) and area (CECA), corneal nerve fiber morphology, magnetic resonance imaging (MRI) brain volumetry, and severity of brain ischemia.

View Article and Find Full Text PDF

Predicting risk of future dementia is essential for primary prevention strategies, particularly in the era of novel immunotherapies. However, few studies have developed population-level prediction models using existing routine healthcare data. In this longitudinal retrospective cohort study, we predicted incident dementia using primary and secondary care health records at 5, 10 and 13 years in 144 113 Scottish older adults who were dementia-free prior to 1st April 2009.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!