Generating stochastic gene regulatory networks consistent with pathway information and steady-state behavior.

IEEE Trans Biomed Eng

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.

Published: June 2012

We present a procedure to generate a stochastic genetic regulatory network model consistent with pathway information. Using the stochastic dynamics of Markov chains, we produce a model constrained by the prior knowledge despite the sometimes incomplete, time independent, and often conflicting nature of these pathways. We apply the Markov theory to study the model's long run behavior and introduce a biologically important transformation to aid in comparison with real biological outcome prediction in the steady-state domain. Our technique produces biologically faithful models without the need for rate kinetics, detailed timing information, or complex inference procedures. To demonstrate the method, we produce a model using 28 pathways from the biological literature pertaining to the transcription factor family nuclear factor-κB. Predictions from this model in the steady-state domain are then validated against nine mice knockout experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2012.2192117DOI Listing

Publication Analysis

Top Keywords

consistent pathway
8
produce model
8
steady-state domain
8
generating stochastic
4
stochastic gene
4
gene regulatory
4
regulatory networks
4
networks consistent
4
pathway steady-state
4
steady-state behavior
4

Similar Publications

There has been a dramatic rise in alcohol consumption and alcohol use disorder (AUD) among women. Recently, the field has made substantial progress toward better understanding sex and gender differences in AUD. This research has suggested accelerated progression to AUD and associated health consequences in women, a phenomenon referred to as "telescoping.

View Article and Find Full Text PDF

Background: Itch is a common clinical sign in skin disorders. While the neural pathways of itch transmission from the skin to the brain are well understood in rodents, the same pathways in dogs remain unclear. The knowledge gap hinders the development of effective treatments for canine itch-related disorders.

View Article and Find Full Text PDF

Introduction: Breast cancer is one of the most common cancers in women and poses a serious threat to women's health. Circular RNAs (circRNAs) have been found to be specifically expressed in cancers and regulate the growth and death of tumor cells. The role of circRNAs in breast cancer remain unknown.

View Article and Find Full Text PDF

Unlabelled: 20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.

View Article and Find Full Text PDF

Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!