We report on the observation of a dc Stark frequency shift at the 10-(13) level by comparing two strontium optical lattice clocks. This frequency shift arises from the presence of electric charges trapped on dielectric surfaces placed under vacuum close to the atomic sample. We show that these charges can be eliminated by shining UV light on the dielectric surfaces, and characterize the residual dc Stark frequency shift on the clock transition at the 10-(18) level by applying an external electric field. This study shows that the dc Stark shift can play an important role in the accuracy budget of lattice clocks, and should be duly taken into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2012.2209 | DOI Listing |
We demonstrate the formation of a complex, multi-wavelength, three-dimensional laser beam configuration with integrated metasurface (MS) optics. Our experiments support the development of a compact Sr optical-lattice clock, which leverages magneto-optical trapping at 461 nm and 689 nm without bulk free-space optics. We integrate six mm-scale metasurfaces on a fused silica substrate and illuminate them with light from optical fibers.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
School of Physics, Beijing Institute of Technology, Beijing 100081, China.
Rev Sci Instrum
October 2024
National Institute of Standards and Technology, Boulder, Colorado 80302, USA.
The frequency stability of a laser locked to an optical reference cavity is fundamentally limited by thermal noise in the cavity length. These fluctuations are linked to material dissipation, which depends on both the temperature of the optical components and the material properties. Here, the design and experimental characterization of a sapphire optical cavity operated at 10 K with crystalline coatings at 1069 nm is presented.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
The dominant noise in an "erasure qubit" is an erasure-a type of error whose occurrence and location can be detected. Erasure qubits have potential to reduce the overhead associated with fault tolerance. To date, research on erasure qubits has primarily focused on quantum computing and quantum networking applications.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
We demonstrate subrecoil Sisyphus cooling using the long-lived ^{3}P_{0} clock state in alkaline-earth-like ytterbium. A 1388-nm optical standing wave nearly resonant with the ^{3}P_{0}→^{3}D_{1} transition creates a spatially periodic light shift of the ^{3}P_{0} clock state. Following excitation on the ultranarrow clock transition, we observe Sisyphus cooling in this potential, as the light shift is correlated with excitation to ^{3}D_{1} and subsequent spontaneous decay to the ^{1}S_{0} ground state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!