A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4. | LitMetric

Engineering nanostructure in bulk thermoelectric materials has recently been established as an effective approach to scatter phonons, reducing the phonon mean free path, without simultaneously decreasing the electron mean free path for an improvement of the performance of thermoelectric materials. Herein the synthesis, phase stability, and thermoelectric properties of the solid solutions Cu(2+x)Zn(1-x)GeSe(4) (x = 0-0.1) are reported. The substitution of Zn(2+) with Cu(+) introduces holes as charge carriers in the system and results in an enhancement of the thermoelectric efficiency. Nano-sized impurities formed via phase segregation at higher dopant contents have been identified and are located at the grain boundaries of the material. The impurities lead to enhanced phonon scattering, a significant reduction in lattice thermal conductivity, and therefore an increase in the thermoelectric figure of merit in these materials. This study also reveals the existence of an insulator-to-metal transition at 450 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja301452jDOI Listing

Publication Analysis

Top Keywords

phase segregation
8
thermoelectric properties
8
thermoelectric materials
8
free path
8
thermoelectric
6
influence nano
4
nano phase
4
segregation thermoelectric
4
properties p-type
4
p-type doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!