Background: To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees.
Methods And Findings: First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3) CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants.
Conclusions: The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316626 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034249 | PLOS |
Phys Chem Chem Phys
January 2025
School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.
View Article and Find Full Text PDFSingapore Med J
January 2025
Department of Orthopaedic Surgery, National University Health System, Singapore.
Introduction: Increasing age is associated with an increased incidence of necrotising fasciitis. In this study, we aimed to compare the clinical presentation, investigations, microbiology and clinical outcome in elderly (age ≥60 years) and nonelderly (age <60 years) patients with extremity necrotising fasciitis.
Methods: A retrospective review of patients with extremity necrotising fasciitis who were surgically treated between January 2005 and December 2021 was conducted.
Front Mol Neurosci
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.
View Article and Find Full Text PDFBiosci Microbiota Food Health
September 2024
Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-1-21 Midori, Moriya-shi, Ibaraki 302-0106, Japan.
α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.
View Article and Find Full Text PDFJ Clin Tuberc Other Mycobact Dis
December 2024
Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
Background: Leprosy is a chronic infectious disease caused by () However, the emergence of drug-resistant strains of this bacterium, especially multidrug-resistant (MDR) strains, is a serious concern. This study aimed to evaluate the global prevalence of MDR and its implications.
Methods: Using PRISMA guidelines, we systematically reviewed ISI Web of Science, MEDLINE, and EMBASE up to August 2023 to assess the prevalence of MDR .
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!