Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neural stem and progenitor cells (NSC/NPCs) are multipotent self-renewing cells that are able to generate neurons, astrocytes and oligodendrocytes (OLs) within the adult central nervous system. We cultured NSC/NPCs from the rat subventricular zone as neurospheres (NS) and studied apoTransferrin (aTf) effects on oligodendroglial specification and maturation. Our findings suggest that aTf acts at different stages during progression from NSC to mature oligodendrocytes. On the one hand, an early event associated with the activation of NSC/NPCs proliferation and commitment toward the oligodendroglial fate, as indicated by increased BrdU incorporation, larger neurospheres production, and higher ability to generate OL precursors (OPCs) from undifferentiated cultures. On the other hand, aTf exposure during differentiating conditions favours OL maturation from OPCs by promoting OL morphological development. This evidence supports a key role of Tf on the generation of OL from NSC/NPCs and highlights its potential in demyelinating disorder treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316520 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033937 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!