Here we present the development and implementation of a genome-wide reverse genetic screen in the budding yeast, Saccharomyces cerevisiae, that couples high-throughput strain growth, robotic RNA isolation and cDNA synthesis, and quantitative PCR to allow for a robust determination of the level of nearly any cellular RNA in the background of ~5,500 different mutants. As an initial test of this approach, we sought to identify the full complement of factors that impact pre-mRNA splicing. Increasing lines of evidence suggest a relationship between pre-mRNA splicing and other cellular pathways including chromatin remodeling, transcription, and 3' end processing, yet in many cases the specific proteins responsible for functionally connecting these pathways remain unclear. Moreover, it is unclear whether all pathways that are coupled to splicing have been identified. As expected, our approach sensitively detects pre-mRNA accumulation in the vast majority of strains containing mutations in known splicing factors. Remarkably, however, several additional candidates were found to cause increases in pre-mRNA levels similar to that seen for canonical splicing mutants, none of which had previously been implicated in the splicing pathway. Instead, several of these factors have been previously implicated to play roles in chromatin remodeling, 3' end processing, and other novel categories. Further analysis of these factors using splicing-sensitive microarrays confirms that deletion of Bdf1, a factor that links transcription initiation and chromatin remodeling, leads to a global splicing defect, providing evidence for a novel connection between pre-mRNA splicing and this component of the SWR1 complex. By contrast, mutations in 3' end processing factors such as Cft2 and Yth1 also result in pre-mRNA splicing defects, although only for a subset of transcripts, suggesting that spliceosome assembly in S. cerevisiae may more closely resemble mammalian models of exon-definition. More broadly, our work demonstrates the capacity of this approach to identify novel regulators of various cellular RNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315463PMC
http://dx.doi.org/10.1371/journal.pgen.1002530DOI Listing

Publication Analysis

Top Keywords

pre-mrna splicing
20
chromatin remodeling
12
splicing
10
reverse genetic
8
genetic screen
8
pre-mrna
7
factors
5
quantitative high-throughput
4
high-throughput reverse
4
screen reveals
4

Similar Publications

RBBP6 anchors pre-mRNA 3' end processing to nuclear speckles for efficient gene expression.

Mol Cell

January 2025

Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:

Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.

View Article and Find Full Text PDF

In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.

View Article and Find Full Text PDF

Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with poor prognosis. RNA alternative splicing dysregulation plays a critical role in the initiation and progression of TNBC. This article systematically introduces the basic process of RNA splicing and then focuses on reviewing the aberrant alternative splicing events and their biological effects in TNBC: 1) Multiple splicing-related factors promote tumor cell proliferation and mediate chemotherapy resistance by regulating the alternative splicing of genes involved in cell survival and drug response; 2) dysregulation of splicing regulatory networks leads to altered splicing of multiple metastasis-related genes, promoting tumor invasion and metastasis; 3) aberrant alternative splicing events participate in tumor progression by affecting the expression of DNA damage repair genes; 4) dysregulation of alternative splicing is also involved in the regulation of tumor immune evasion and stem cell properties.

View Article and Find Full Text PDF

Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!