Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prediction of the free energy of solvation of a small molecule, or its transfer energy, is a necessary step along the path towards calculating the interactions between molecules that occur in an aqueous environment. A set of these transfer energies were gathered from the literature for series of chlorinated molecules with varying numbers of chlorines based on ethane, biphenyl, and dibenzo-p-dioxin. This focused set of molecules were then provided as a blinded challenge to assess the ability of current computational solvation methods to accurately model the interactions between water and increasingly chlorinated compounds. This was presented as part of the SAMPL3 challenge, which represented the fourth iterative blind prediction challenge involving transfer energies. The results of this exercise demonstrate that the field in general has difficulty predicting the transfer energies of more highly chlorinated compounds, and that methods seem to be erring in the same direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10822-012-9568-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!