Allethrin (C(19)H(26)O(3)) is non-cyano-containing pyrethroid insecticide that is used extensively for controlling flies and mosquitoes. Apart from its neurotoxic effects in non-target species, allethrin is reported to be mutagenic in bacterial systems. In this study, we observed oxidative damage-mediated genotoxicity caused by allethrin in Swiss albino mice. The genotoxic potential of allethrin was evaluated using chromosome aberrations (CAs) and a micronuclei (MN) induction assay as genetic end-points. The oral intubation of allethrin (25 and 50mg/kg b.wt.) significantly induces CAs and MN in mouse bone marrow cells. The DNA-damaging potential of allethrin was estimated in mouse liver using the DNA alkaline unwinding assay (DAUA) and by measuring the levels of 8-hydroxy-2'-deoxy-guanosine (8-OH-dG). Furthermore, a dose-dependent increase in reactive oxygen species (ROS) generation and lipid peroxidation (LPO), with a concurrent decrease in superoxide dismutase (SOD) and catalase, confirm its pro-oxidant potential. The DNA-damaging potential of allethrin was found to be mediated through the modulation of p53, p21, GADD45α and MDM-2. These results confirm the genotoxic and the pro-oxidant potential of allethrin in Swiss albino mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2012.03.003DOI Listing

Publication Analysis

Top Keywords

potential allethrin
16
swiss albino
12
albino mice
12
allethrin
8
allethrin swiss
8
dna-damaging potential
8
pro-oxidant potential
8
potential
5
allethrin-induced genotoxicity
4
genotoxicity oxidative
4

Similar Publications

Unraveling the degradation mechanism of multiple pyrethroid insecticides by Pseudomonas aeruginosa and its environmental bioremediation potential.

Environ Int

December 2024

State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Extensive use of pyrethroid insecticides poses significant risks to both ecological ecosystems and human beings. Herein, Pseudomonas aeruginosa PAO1 exhibited exceptional degradation capabilities towards a range of pyrethroid family insecticides including etofenprox, bifenthrin, tetramethrin, D-cypermethrin, allethrin, and permethrin, with a degradation efficiency reaching over 84 % within 36 h (50 mg·L). Strain PAO1 demonstrated effective soil bioremediation by removing etofenprox across different concentrations (25-100 mg·kg), with a degradation efficiency over 77 % within 15 days.

View Article and Find Full Text PDF

Objective: To explore the potential adverse effects of prolonged inhalation of mosquito coil smoke on the testicular histomorphology and serum testosterone levels in rats.

Study Design: An experimental study. Place and Duration of the Study: Department of Anatomy, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan, from January to December 2020.

View Article and Find Full Text PDF

Inhaling Allethrin (C19H26O3) may induce oxidative stress in lung cells by causing the formation of free radi-cals. Interleukins (IL) are a group of secreted cytokines or proteins and signaling molecules initially produced as an immune response by leukocytes. (haramonting) contains antioxidants that may prevent lung damage induced by allethrin-containing electric mosquito repellents.

View Article and Find Full Text PDF

Pyrethroids and its derivatives widespread and uncontrolled continuous use has influenced multiple deleterious effects resulting in as a potential risk factor causing damage to the organ systems. Allethrin and prallethrin are extensively used yet their influences on human primary cells are very limited or under reported. The potential mechanisms by which allethrin and prallethrin modulates human primary cells, especially the molecular mechanisms or interconnectivity of autophagy-apoptosis, their clinical relevance in human subjects or patients are not well defined.

View Article and Find Full Text PDF

Pesticides in the Indoor Environment of Residential Houses: A Case Study in Strasbourg, France.

Int J Environ Res Public Health

October 2022

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES-UMR 7515 CNRS), Université de Strasbourg, Equipe de Physico-Chimie de l'Atmosphère, F-67087 Strasbourg, France.

Indoor environmental exposure to pesticides has become one of the major concerns that might adversely affect human health and development. People spend most of their lifetime in enclosed indoor environments where they might inhale harmful toxic chemicals, such as pesticides, dispersed either in particulate or in a gas phase. In this study, an assessment of pesticide contamination in indoor environments was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!