A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Treadmill gait speeds correlate with physical activity counts measured by cell phone accelerometers. | LitMetric

A number of important health-related outcomes are directly related to a person's ability to maintain normal gait speed. We hypothesize that cellular telephones may be repurposed to measure this important behavior in a noninvasive, continuous, precise, and inexpensive manner. The purpose of this study was to determine if physical activity (PA) counts collected by cell phone accelerometers could measure treadmill gait speeds. We also assessed how cell phone placement influenced treadmill gait speed measures. Participants included 55 young, middle-aged, and older community-dwelling men and women. We placed cell phones as a pendant around the neck, and on the left and right wrist, hip, and ankle. Subjects then completed an individualized treadmill protocol, alternating 1 min rest periods with 5 min of walking at different speeds (0.3-11.3 km/h; 0.2-7 mi/h). No persons were asked to walk at speeds faster than what they would achieve during day-to-day life. PA counts were calculated from all sensor locations. We built linear mixed statistical models of PA counts predicted by treadmill speeds ranging from 0.8 to 6.4 km/h (0.5-4 mi/h) while accounting for subject age, weight, and gender. We solved linear regression equations for treadmill gait speed, expressed as a function of PA counts, age, weight, and gender. At all locations, cell phone PA counts were strongly associated with treadmill gait speed. Cell phones worn at the hip yielded the best predictive model. We conclude that in both men and women, cell phone derived activity counts strongly correlate with treadmill gait speed over a wide range of subject ages and weights.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387318PMC
http://dx.doi.org/10.1016/j.gaitpost.2012.02.025DOI Listing

Publication Analysis

Top Keywords

treadmill gait
24
cell phone
20
gait speed
20
activity counts
12
treadmill
8
gait speeds
8
physical activity
8
phone accelerometers
8
men women
8
women cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!