Interspecies somatic cell nuclear transfer (ISCNT) has been proposed as a technique to produce cloned offspring of endangered species as well as to investigate nucleus-cytoplasm interactions in mammalian embryo. However, it is still not known which embryo culture medium is optimal for ISCNT embryos for the nuclear donor or the oocyte recipient. We assessed the effects of the culture medium on the developmental competence of the ISCNT embryos by introducing cynomolgus monkey (Macaca fascicularis) fibroblast nuclei into enucleated rabbit (Oryctolagus cuniculus) oocytes (monkey-rabbit embryo). The monkey-rabbit ISCNT embryos that were cultured in mCMRL-1066 developed to the blastocyst stage, although all monkey-rabbit ISCNT embryos cultured in M199 were arrested by the 4-cell stage. When monkey-rabbit ISCNT and rabbit-rabbit somatic cell nuclear transfer (SCNT) embryos were cultured in mCMRL-1066, the blastocyst cell numbers of the monkey-rabbit ISCNT embryos corresponded to the cell numbers of the control rabbit-rabbit SCNT embryos, which were produced from a rabbit fibroblast nucleus and an enucleated rabbit oocyte. In addition, the presence of mitochondria, which were introduced with monkey fibroblasts into rabbit recipient cytoplasm, was confirmed up to the blastocyst stage by polymerase chain reaction (PCR). This study demonstrated that: (1) rabbit oocytes can reprogramme cynomolgus monkey somatic cell nuclei, and support preimplantation development; (2) monkey-rabbit ISCNT embryos developed well in monkey culture medium at early embryonic developmental stages; (3) the cell number of monkey-rabbit ISCNT embryos is similar to that of rabbit-rabbit SCNT embryos; and (4) the mitochondrial fate of monkey-rabbit ISCNT embryos is heteroplasmic from the time just after injection to the blastocyst stage that has roots in both rabbit oocytes and monkey fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0967199412000019DOI Listing

Publication Analysis

Top Keywords

iscnt embryos
32
monkey-rabbit iscnt
28
embryos
12
cynomolgus monkey
12
somatic cell
12
culture medium
12
embryos cultured
12
blastocyst stage
12
scnt embryos
12
iscnt
10

Similar Publications

Morphokinetic Analyses of Fishing Cat-Domestic Cat Interspecies Somatic Cell Nuclear Transfer Embryos Through A Time-Lapse System.

Animals (Basel)

January 2025

Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.

A time-lapse live embryo monitoring system provides a powerful approach to recording dynamic developmental events of cultured embryos in detail. By obtaining continuous short-interval images, blastocyst formation can be predicted and embryos can be selected. The objective of this study was to investigate the morphokinetic parameters of fishing cat-domestic cat interspecies somatic cell nuclear transfer (iSCNT) embryos from one-cell to blastocyst stages, and in particular, the cleavage patterns of the first division in iSCNT and IVF embryos, as these play a central role in euploidy.

View Article and Find Full Text PDF

iSCNT embryo culture system for restoration of Cervus nippon hortulorum, presumed to be sika deer in the Korean Peninsula.

PLoS One

April 2024

General Graduate School of Animal life convergence science, Hankyong National University, Ansung, Gyeonggi-do, Republic of Korea.

Sika deer inhabiting South Korea became extinct when the last individual was captured on Jeju Island in Korea in 1920 owing to the Japanese seawater relief business, but it is believed that the same subspecies (Cervus nippon hortulorum) inhabits North Korea and the Russian Primorskaya state. In our study, mt-DNA was used to analyze the genetic resources of sika deer in the vicinity of the Korean Peninsula to restore the extinct species of continental deer on the Korean Peninsula. In addition, iSCNT was performed using cells to analyze the potential for restoration of extinct species.

View Article and Find Full Text PDF

Bovid Interspecies Somatic Cell Nuclear Transfer with Ooplasm Transfer.

Methods Mol Biol

April 2023

Reproductive Sciences Unit, Toronto Zoo, Toronto, ON, Canada.

Interspecies somatic cell nuclear transfer (iSCNT) contributes to the preservation of endangered species, albeit nuclear-mitochondrial incompatibilities constrain its application. iSCNT, coupled with ooplasm transfer (iSCNT-OT), has the potential to overcome the challenges associated with species- and genus-specific differences in nuclear-mitochondrial communication. Our iSCNT-OT protocol combines the transfer of both bison (Bison bison bison) somatic cell and oocyte ooplasm by a two-step electrofusion into bovine (Bos taurus) enucleated oocytes.

View Article and Find Full Text PDF

Cloning, commonly referred to as somatic cell nuclear transfer (SCNT), is the technique of enucleating an oocyte and injecting a somatic cell into it. This study was carried out with interspecific SCNT technology to clone the Arabian Oryx utilizing the oryx's fibroblast cells and transfer it to the enucleated oocytes of a domestic cow. The recipient oocytes were extracted from the cows that had been butchered.

View Article and Find Full Text PDF

Objective: Scarcity of oocytes for assisted reproduction in endangered species can be bypassed by interspecies somatic cell nuclear transfer (iSCNT). In Felids, domestic cat (Felis catus) oocytes can serve as recipients for the nucleus of the endangered Persian leopard (Panthera pardus saxicolor). However, oocyte maturation is still suboptimal in cats, whereas it has been reported to benefit from micro-vibration in non-felid species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!