Osteoarthritis (OA) is the most frequently occurring rheumatic disease, caused by metabolic changes in chondrocytes, the cells that maintain cartilage. Treatment with electromagnetic fields (MF) produces benefits in patients affected by this pathology. Isolated human osteoarthritic (OA) chondrocytes were cultured in vitro under standard conditions or stimulated with IL-1beta or IGF-1, to mimic the imbalance between chondroformation and chondroresorption processes observed in OA cartilage in vivo. The cells were exposed for a specific time to extremely low frequency (ELF; 100-Hz) electromagnetic fields and to the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEF), which are characterized by variable frequencies, intensities, and waveforms. Using flow cytometry, we tested the effects of the different types of exposure on chondrocyte metabolism. The exposure of the cells to both systems enhances cell proliferation, does not generate reactive oxygen species, does not cause glutathione depletion or changes in mitochondrial transmembrane potential and does not induce apoptosis. This study presents scientific support to the fact that MF could influence OA chondrocytes from different points of view (viability, ROS production and apoptosis). We can conclude that both ELF and TAMMEF systems could be recommended for OA therapy and represent a valid non-pharmacological approach to the treatment of this pathology.
Download full-text PDF |
Source |
---|
Bioelectromagnetics
January 2025
Bioelectromagnetics Laboratory, University of Wollongong, Wollongong, Australia.
In this paper, we present the design, RF-EMF performance, and a comprehensive uncertainty analysis of the reverberation chamber (RC) exposure systems that have been developed for the use of researchers at the University of Wollongong Bioelectromagnetics Laboratory, Australia, for the purpose of investigating the biological effects of RF-EMF in rodents. Initial studies, at 1950 MHz, have focused on investigating thermophysiological effects of RF exposure, and replication studies related to RF-EMF exposure and progression of Alzheimer's disease (AD) in mice predisposed to AD. The RC exposure system was chosen as it allows relatively unconstrained movement of animals during exposures which can have the beneficial effect of minimizing stress-related, non-RF-induced biological and behavioral changes in the animals.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey.
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).
View Article and Find Full Text PDFHealth Phys
January 2025
Sublight Engineering PLLC, Arlington, VA.
This study investigated the implementation and impact of fifth-generation (5G) wireless millimeter wave (mmW) technology. 5G offers significant advancements over previous generations and supports additional frequency bands, including mmW, to enhance mobile broadband with ultra-reliable, low-latency communications, supporting a high volume of diverse communications. This technology is expected to enable billions of new connections in the Internet of Things (IoT), fostering innovations in various sectors including healthcare, manufacturing, and education.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials.
View Article and Find Full Text PDFMultichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!