The transcription factor C/EBPα is a critical mediator of myeloid differentiation and is often functionally impaired in acute myeloid leukemia. Recent studies have suggested that oncogenic FLT3 activity disrupts wild-type C/EBPα function via phosphorylation on serine 21 (S21). Despite the apparent role of pS21 as a negative regulator of C/EBPα transcription activity, the mechanism by which phosphorylation tips the balance between transcriptionally competent and inhibited forms remains unresolved. In the present study, we used immuno-affinity purification combined with quantitative mass spectrometry to delineate the proteins associated with C/EBPα on chromatin. We identified DEK, a protein with genetic links to leukemia, as a member of the C/EBPα complexes, and demonstrate that this association is disrupted by S21 phosphorylation. We confirmed that DEK is recruited specifically to chromatin with C/EBPα to enhance GCSFR3 promoter activation. In addition, we demonstrated that genetic depletion of DEK reduces the ability of C/EBPα to drive the expression of granulocytic target genes in vitro and disrupts G-CSF-mediated granulocytic differentiation of fresh human BM-derived CD34(+) cells. Our data suggest that C/EBPα and DEK coordinately activate myeloid gene expression and that S21 phosphorylation on wild-type C/EBPα mediates protein interactions that regulate the differentiation capacity of hematopoietic progenitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367892PMC
http://dx.doi.org/10.1182/blood-2011-10-383083DOI Listing

Publication Analysis

Top Keywords

c/ebpα
10
c/ebpα dek
8
dek coordinately
8
myeloid differentiation
8
wild-type c/ebpα
8
s21 phosphorylation
8
coordinately regulate
4
myeloid
4
regulate myeloid
4
differentiation
4

Similar Publications

Background: Candida albicans is the primary cause of vulvovaginal candidiasis, a worldwide health concern for women. The use of supplemental methods, such as antimicrobial photodynamic therapy (aPDT) and probiotics, was promoted by the ineffectiveness of the existing antifungal drugs.

Methods: This study examines the combined effects of probiotics (Bacillus and Enterococcus isolated from the fermented pickles) and PDT (using red laser (655 nm, 18 J/cm) as a light source and methylene blue dye (30 mg/mL) as a photosensitizer) on the in vitro virulence activity of C.

View Article and Find Full Text PDF

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.

View Article and Find Full Text PDF

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!