Extensive first-pass metabolism can significantly limit a drug's oral exposure levels. In this work, we introduce an innovative approach for increasing the oral bioavailability of a drug that undergoes extensive reversible glucuronidation and enterohepatic recirculation through intraduodenal coadministration of the deconjugating enzyme β-glucuronidase. Intraduodenal administration of JNJ-10198409 (10 mg/kg) with β-glucuronidase (34,000-140,000 units/kg) to catheterized rats resulted in a significant increase (p < 0.005) in the mean area under the plasma concentration versus time curve (AUC; approx. threefold) and maximum plasma concentration (C(max); approx. twofold) of JNJ-10198409. The AUC and C(max) were 60 ± 18 ng h/mL and 76 ± 29 ng/mL, respectively, with no enzyme and 177 ± 55 ng h/mL and 129 ± 41 ng/mL, respectively, with β-glucuronidase coadministered. Moreover, the AUC of the primary glucuronide metabolite increased approximately sevenfold from 1173 ± 361 (ng h)/mL with no enzyme coadministered to 8723 ± 2133 ng h/mL with coadministered enzyme. These pharmacokinetic data support the hypothesis that when the primary glucuronide is secreted into the duodenum via the bile duct, the glucuronide is converted by β-glucuronidase back to the parent compound. The parent compound is then reabsorbed and reconjugated, resulting in elevated systemic exposures to both parent and glucuronide. Potential clinical and preclinical applications and considerations for this approach are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23113 | DOI Listing |
Am J Pathol
December 2024
Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia. Electronic address:
Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis, which means a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome, which was shown to lead to enterohepatic recirculation and an increase of toxic secondary bile acids.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, USA.
Perfluoroalkyl substances (PFAS) are a major public health concern, in part because several PFAS have elimination half-lives on the order of years and are associated with adverse health outcomes. While PFAS can be transported into bile, their efficient reuptake by intestinal transporter proteins results in minimal fecal elimination. Here, we tested the hypothesis that consumption of oat β-glucan, a dietary supplement known to disrupt the enterohepatic recirculation of bile acids, will reduce PFAS body burdens.
View Article and Find Full Text PDFChem Biol Interact
December 2024
College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China. Electronic address:
Gut microbial Loop-1 β-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of Platycladi cacumen and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (EeGUS, SaGUS, CpGUS and EcGUS).
View Article and Find Full Text PDFMetabolites
August 2024
Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19130, USA.
J Pharmacol Exp Ther
October 2024
Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!