In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854304PMC
http://dx.doi.org/10.1590/s0100-879x2012007500054DOI Listing

Publication Analysis

Top Keywords

alveolar bone
24
bone osteoblasts
20
type diabetic
12
diabetic patients
12
osteoblasts isolated
8
type diabetics
8
biological properties
8
cultured vitro
8
staining cell
8
osteoblasts received
8

Similar Publications

The objective of this study was to tailor an osteoinductive scaffold for alveolar bone regeneration and around immediately placed implants in extraction sockets of dogs. Tailored amorphous multiporous bioactive glass (TAMP -BG) was prepared and characterized for bioactivity and response of human alveolar bone marrow mesenchymal stem cells (hABMSCs). Extraction sockets of twenty-two male mongrel dogs received TAMP-BG in the right side around implant in the distal socket of the mandibular fourth premolar (P4), while the adjacent empty mesial socket of the same tooth was filled with the same graft.

View Article and Find Full Text PDF

Comparative evaluation of allograft particulate bone and cortical bone blocks combined with xenograft bone for labial bone defects in the aesthetic zone: a prospective cohort study.

BMC Oral Health

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Purpose: This study aimed to evaluate the osteogenic performance of allograft particulate bone and cortical bone blocks combined with xenograft under bovine pericardium membranes, for treating different degrees of labial bone defects in the aesthetic zone.

Materials And Methods: Twenty-four patients with bone defects were divided into two groups based on defect severity (Terheyden 1/4 and 2/4 groups). The Terheyden 1/4 group received granular bone grafts alone, while the Terheyden 2/4 group received cortical bone blocks combined with granular bone grafts.

View Article and Find Full Text PDF

Background And Objectives: Gingivitis and periodontitis are common periodontal diseases that can significantly harm overall oral health, affecting the teeth and their supporting tissues, along with the surrounding anatomical structures, and if left untreated, leading to the total destruction of the alveolar bone and the connective tissues, tooth loss, and other more serious systemic health issues. Numerous studies have shown that propolis can help reduce gum inflammation, inhibit the growth of pathogenic bacteria, and promote tissue regeneration, but with varying degrees of success reported. For this reason, this comprehensive systematic review aims at finding out the truth concerning the efficacy of propolis mouthwashes in treating gingivitis and periodontitis, as its main objective.

View Article and Find Full Text PDF

PIK3R3 regulates differentiation and senescence of periodontal ligament stem cells and mitigates age-related alveolar bone loss by modulating FOXO1 expression.

J Adv Res

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:

Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.

View Article and Find Full Text PDF

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!