Biomimetic approach to forming chitin/aragonite composites.

Chem Commun (Camb)

MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.

Published: May 2012

Biomimetic materials which display the complexity of biominerals like nacre are synthetically difficult to prepare. The formation of chitin/calcium carbonate composites, where CaCO(3) is present as aragonite, was achieved via reacetylation of preformed chitosan scaffolds followed by the combination of presoaking of chitin templates with mineral solutions in the presence of poly(acrylic acid). The as-synthesised composites are comprised of well-ordered ribbons of aragonite crystals held within an organic matrix, mimicking the structure of nacre.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc00135gDOI Listing

Publication Analysis

Top Keywords

biomimetic approach
4
approach forming
4
forming chitin/aragonite
4
chitin/aragonite composites
4
composites biomimetic
4
biomimetic materials
4
materials display
4
display complexity
4
complexity biominerals
4
biominerals nacre
4

Similar Publications

Biomimetic patterning emerges as a promising antibiotic-free approach to protect medical devices from bacterial adhesion and biofilm formation. The main advantage of this approach lies in its simplicity and scalability for industrial applications. In this study, we employ it to produce antibacterial coatings based on silicone materials, widely used in the healthcare industry.

View Article and Find Full Text PDF

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

Wet adhesives for hard tissues.

Acta Biomater

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:

The development of wet adhesives capable of bonding in aqueous environments, particularly for hard tissues such as bone, tooth, and cartilage, remains a significant challenge in material chemistry and biomedical research. Currently available hard tissue adhesives in clinical practice lack well-defined wet adhesion properties. Nature offers valuable inspiration through the adhesive mechanisms of marine organisms, advancing the design of bioinspired wet adhesives.

View Article and Find Full Text PDF

Electrospun membranes with biomimetic fibrous structures and high specific surfaces benefit cell proliferation and tissue regeneration but are prone to cause chronic inflammation and foreign body response (FBR). To solve these problems, we herein report an approach to functionalize electrospun membranes with antibacterial and anti-inflammatory components to modulate inflammatory responses and improve implantation outcomes. Specifically, electrospun polylactic acid (PLA)/gelatin (Gel) fibers were grafted with chitosan (CS) and ibuprofen (IBU) via carbodiimide chemistry.

View Article and Find Full Text PDF

Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction.

J Funct Biomater

January 2025

Center for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.

Cranio-maxillofacial bone reconstruction, especially for large defects, remains challenging. Synthetic biomimetic materials are emerging as alternatives to autogenous grafts. Tissue engineering aims to create natural tissue-mimicking materials, with calcium phosphate-based scaffolds showing promise for bone regeneration applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!