Background: Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa.

Results: Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants.

Conclusions: Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361479PMC
http://dx.doi.org/10.1186/1754-6834-5-19DOI Listing

Publication Analysis

Top Keywords

camelina sativa
20
seed yield
16
atpap2 camelina
12
camelina
8
plant growth
8
lipids extracted
8
extracted seeds
8
seeds camelina
8
aviation biofuels
8
environmentally friendly
8

Similar Publications

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF

Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.

View Article and Find Full Text PDF

This study aimed to evaluate the oxidative stability and surface properties of cold-pressed vegetable oils using the Langmuir monolayer technique. Six oils-milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, and pumpkin seed-were analyzed to investigate their molecular organization and behavior at the air/water interface, particularly after undergoing oxidation. The results showed that oils rich in polyunsaturated fatty acids (PUFAs), such as flaxseed and evening primrose oils, formed monolayers with larger molecular areas and lower stability, which led to faster oxidative degradation, especially under thermal conditions.

View Article and Find Full Text PDF

The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.

View Article and Find Full Text PDF

As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!