Background: Diverse growth factors secreted from human adipocyte-derived stem cells (hASCs) that support or manage adjacent cells have been studied for therapeutic potentials to a variety of pathological models. However, senescent growth arrest in hASCs during in vitro culture and subsequent defective differentiation potential, have been technical barriers to further genetic modification of hASCs for functional improvement.
Objective: We investigated the feasibility of long-term hASC culture to enhance their therapeutic use.
Methods: We used a MYC variant to generate hASCs expressing v-myc and determined their growth potential and growth factor secretion profile. We further introduced an AKT variant to generate constitutively active (CA)-Akt/v-myc hASCs. Finally, we tested the ability of promoting wound healing of medium conditioned with CA-Akt/v-myc hASCs.
Results: The v-myc hASCs actively proliferated longer than control hASCs. Increased secretion of vascular endothelial growth factor (VEGF) by v-myc hASCs promoted the migration potential of hASCs and vasculogenesis in co-cultured endothelial cells. Additional genetic modification of v-myc hASCs using CA-Akt further increased VEGF secretion. In addition, injection of CA-Akt/v-myc hASCs-CM into wound-mice model promoted wound healing compared to normal hASCs-CM.
Conclusion: Genetic modification of hASCs to stimulate secretion of growth factors is a novel strategy to maximize their paracrine effect and improve their therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdermsci.2012.02.010 | DOI Listing |
Science
January 2025
Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.
View Article and Find Full Text PDFPLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.
Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.
Plant Biotechnol J
January 2025
Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies.
View Article and Find Full Text PDFNoncoding RNA
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!