Inhibition of the local formation of estrogens seems to be an attractive strategy for pharmacological intervention in hormone-dependent disorders. The direct antiproliferative properties of ten nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) inhibitors were investigated on human cancer cell lines of gynecological origin. The mechanism of the antiproliferative action was approximated by cell cycle analysis, fluorescent microscopy, BrdU assay, determination of caspase-3 activity and quantification of the expression of cell cycle regulators at mRNA level. Treatment of HeLa cells with some of the compounds resulted in a concentration-dependent inhibition of the G1-S transition and an increase in the apoptotic population. The most effective agents increased the expression of tumor suppressors p21 and p53, while CDK2 and Rb were down-regulated. The reported anticancer actions of the tested compounds are independent of the 17β-HSD1-inhibiting capacity. These results indicate that it is possible to combine direct antiproliferative activity and 17β-HSD1 inhibition resulting in novel agents with dual mode of action.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756366.2012.672414DOI Listing

Publication Analysis

Top Keywords

direct antiproliferative
12
nonsteroidal 17β-hydroxysteroid
8
17β-hydroxysteroid dehydrogenase
8
dehydrogenase type
8
cell cycle
8
antiproliferative nonsteroidal
4
type inhibitors
4
inhibitors vitro
4
vitro inhibition
4
inhibition local
4

Similar Publications

The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.

View Article and Find Full Text PDF

Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.

View Article and Find Full Text PDF

: Opium consumption was recently classified by the International Agency for Research on Cancer (IARC) monograph as carcinogenic to humans based on strong evidence for cancers of the larynx, lung, and urinary bladder, and limited evidence for cancers of the oesophagus, stomach, pancreas, and pharynx. This poses the question of a potential pro-cancer effect of pharmaceutical opioid analgesics. In vitro studies employing a variety of experimental conditions suggest that opioid alkaloids have proliferative or antiproliferative effects.

View Article and Find Full Text PDF

Several cannabis plant-derived compounds, especially cannabinoids, exhibit therapeutic potential in numerous diseases and conditions. In particular, THC and CBD impart palliative, antiemetic, as well as anticancer effects. The antitumor effects include inhibition of cancerous cell growth and metastasis and induction of cell death, all mediated by cannabinoid interaction with the endocannabinoid system (ECS).

View Article and Find Full Text PDF

Targeted therapy is preferable over other therapeutics due to its limitation of drawbacks and better pharmaceutical outcomes. VEGF and its receptors have been observed to be hyper-activated in many cancer types and are considered promising targets for assigning anticancer agents. The current study is directed towards synthesis of novel antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with VEGFR-2 properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!