Cationic liposome-DNA (CL-DNA) complexes are being pursued as nonviral gene delivery systems for use in applications that include clinic trials. However, to compete with viral vectors for systemic delivery in vivo, their efficiencies and pharmacokinetics need to be improved. The addition of poly (ethylene glycol)-lipids (PEGylation) prolongs circulation lifetimes of liposomes, but inhibits cellular uptake and endosomal escape of CL-DNA complexes. We show that this limits their transfection efficiency (TE) in a manner dependent on the amount of PEG-lipid, the lipid/DNA charge ratio, and the lipid membrane charge density. To improve endosomal escape of PEGylated CL-DNA complexes, we prepared an acid-labile PEG-lipid (HPEG2K-lipid, PEG MW 2000) which is designed to lose its PEG chains at the pH of late endosomes. The HPEG2K-lipid and a similar but acid-stable PEG-lipid were used to prepare PEGylated CL-DNA complexes. TLC and dynamic light scattering showed that HPEG2K-CL-DNA complexes are stable at pH 7.4 for more than 24 h, but the PEG chains are cleaved at pH 5 within 1 h, leading to complex aggregation. The acid-labile HPEG2K-CL-DNA complexes showed enhanced TE over complexes stabilized with the acid-stable PEG-lipid. Live-cell imaging showed that both types of complexes were internalized to quantitatively similar particle distributions within the first 2 h of incubation with cells. Thus, we attribute the increased TE of the HPEG2K-CL-DNA complexes to efficient endosomal escape, enabled by the acid-labile HPEG2K-lipid which sheds its PEG chains in the low pH environment of late endosomes, effectively switching on the electrostatic interactions that promote fusion of the membranes of complex and endosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337860PMC
http://dx.doi.org/10.1016/j.biomaterials.2012.03.038DOI Listing

Publication Analysis

Top Keywords

endosomal escape
16
cl-dna complexes
16
peg chains
12
hpeg2k-cl-dna complexes
12
complexes
10
transfection efficiency
8
cationic liposome-dna
8
complexes prepared
8
prepared acid-labile
8
acid-labile peg-lipid
8

Similar Publications

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.

View Article and Find Full Text PDF

Domain antibodies such as monobodies provide an attractive immunoglobin fold for evolving high-affinity protein binders targeting the intracellular proteins implicated in cell signalling. However, it remains a challenge to endow cell permeability to these small and versatile protein binders. Here, we report a streamlined approach combining orthogonal crosslinking afforded by a genetically encoded β-lactam-lysine (BeLaK) and genetic supercharging to generate cell-penetrating monobodies.

View Article and Find Full Text PDF

Cationic Hydroxyethyl Cellulose Nanocomplexes and RANK siRNA/Zoledronate Co-Delivery Systems for Osteoclast Inhibition.

Pharmaceutics

December 2024

Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.

Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.

View Article and Find Full Text PDF

Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids.

Molecules

December 2024

Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.

Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!