Objectives: The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement.

Material And Methods: In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis.

Results: Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05).

Conclusions: Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2012.02460.xDOI Listing

Publication Analysis

Top Keywords

insertion torque
28
implant macrodesign
16
implant placement
12
bone temperature
12
bone condensing
12
torque values
12
bone
10
implant
9
surgical technique
8
lateral bone
8

Similar Publications

Objectives: This study aimed to evaluate the osseointegration properties of titanium bone implants coated with carob-mediated calcium hydroxide nanoparticles biomechanically, radiographically, and histologically on rabbit tibias.

Material And Methods: Forty coated and forty uncoated titanium alloy bone implants were inserted into 20 New Zealand rabbits; each tibia received 2 implants. The rabbits were sacrificed after 4 or 8 weeks, and samples were retrieved for biomechanical evaluation through removal torque test to assess the bond between implant and bone, radiographic evaluation through microcomputed tomography analysis to compare the bone-to-implant contact percentage and bone volume of the peri-implant area, scanning electron microscopic and histologic evaluation through hematoxylin and eosin stain.

View Article and Find Full Text PDF

Background: Lumbar degenerative diseases are an important factor in disability worldwide, and they are also common among the elderly population. Stand-Alone Oblique Lumbar Interbody Fusion (Stand-Alone OLIF) is a novel surgical approach for treating lumbar degenerative diseases. However, long-term follow-up after surgery has revealed the risk of endplate collapse associated with Stand-Alone OLIF procedures.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on infrazygomatic miniscrew implants (IZC-MSI) as temporary anchorage devices in orthodontics, highlighting their importance in supporting maxillary tooth movement.
  • The systematic review aimed to evaluate the success rate and stability factors of IZC-MSI through a comprehensive electronic search of multiple databases.
  • Results from 14 studies indicated a 92% overall success rate for these implants, with variations based on sample size and significant heterogeneity in factors influencing their stability.
View Article and Find Full Text PDF

The prevailing research emphasis has been on reducing the critical switching current density (J) by enhancing the damping-like efficiency (β). However, recent studies have shown that the field-like efficiency (β) can also play a major role in reducing J. In this study, the central inversion asymmetry of Pt-Co is significantly enhanced through interface engineering at the sub-atomic layer of Ta, thereby inducing substantial alterations in the β associated with the interface.

View Article and Find Full Text PDF

Introduction: Short implants are today a reliable, minimally invasive option for the rehabilitation of the posterior maxilla. However, maintaining marginal bone stability remains a crucial factor for long-term success, particularly in the case of short implants. The present multicenter prospective case-control study aimed to compare the clinical outcomes of bone-level and tissue-level short implants in the posterior maxilla, focusing on implant survival and peri-implant marginal bone stability over 1 year of function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!