Thermal transport at carbon nanotube (CNT) interfaces was investigated by characterizing the interfacial thermal conductance between metallic or semiconducting CNTs and three different surfactants. We thereby resolved a difference between metallic and semiconducting CNTs. CNT portions separated by their electronic type were prepared in aqueous suspensions. After slightly heating the CNTs dispersed in the suspension, we obtained cooling curves by monitoring the transient changes in absorption, and from these cooling curves, we extracted the interfacial thermal conductance by modeling the thermal system. We found that the semiconducting CNTs unexpectedly exhibited a higher conductance of 11.5 MW/m(2)·K than that of metallic CNTs (9 MW/m(2)·K). Meanwhile, the type of surfactants hardly influenced the heat transport at the interface. The surfactant dependence is understood in terms of the coupling between the low-frequency vibrational modes of the CNTs and the surfactants. Explanations for the electronic-type dependency are considered based on the defect density in CNTs and the packing density of surfactants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn2049762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!