AI Article Synopsis

  • Deep root water uptake and hydraulic redistribution (HR) significantly affect forest ecosystems during drought, influencing water and carbon fluxes, with HR potentially mitigating soil drying effects.
  • In a study of loblolly pine plantations, HR increased tree transpiration during dry seasons by up to 40%, impacting gross primary productivity and carbon uptake, but was influenced by soil texture and nutrient availability.
  • Future climate conditions may reduce HR by up to 25%, diminishing tree resilience to drought and affecting transpiration and carbon uptake differently across various soil types, potentially leading to decreased growth rates at certain sites.

Article Abstract

Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the process-based model MuSICA, this study indicated that HR can mitigate the effects of soil drying and had important implications for carbon uptake potential and net ecosystem exchange (NEE), especially when N fertilization is considered. At the coastal site (C), characterized by deep organic soil, HR increased dry season tree transpiration (T) by up to 40%, and such an increase affected NEE through major changes in gross primary productivity (GPP). Deep-rooted trees did not necessarily translate into a large volume of HR unless soil texture allowed large water potential gradients to occur, as was the case at the sandy site (S). At the Piedmont site (P) characterized by a shallow clay-loam soil, HR was low but not negligible, representing up to 10% of T. In the absence of HR, it was predicted that at the C, S and P sites, annual GPP would have been diminished by 19, 7 and 9%, respectively. Under future climate conditions HR was predicted to be reduced by up to 25% at the C site, reducing the resilience of trees to precipitation deficits. The effect of HR on T and GPP was predicted to diminish under future conditions by 12 and 6% at the C and P sites, respectively. Under future conditions, T was predicted to stay the same at the P site, but to be marginally reduced at the C site and slightly increased at the S site. Future conditions and N fertilization would decrease T by 25% at the C site, by 15% at the P site and by 8% at the S site. At the C and S sites, GPP was estimated to increase by 18% and by >70% under future conditions, respectively, with little effect of N fertilization. At the P site, future conditions would stimulate GPP by only 12%, but future conditions plus N fertilization would increase GPP by 24%. As a consequence, in all sites, water use efficiency was predicted to improve dramatically with future conditions. Modeling the effect of reduced annual precipitation indicated that limited water availability would decrease all carbon fluxes, including NEE and respiration. Our simulations highlight the interactive effects of nutrients and elevated CO(2), and showed that the effect of N fertilization would be greater under future climate conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tps018DOI Listing

Publication Analysis

Top Keywords

future conditions
28
conditions fertilization
12
site
11
future
9
conditions
9
interactive effects
8
climate change
8
hydraulic redistribution
8
pine plantations
8
carbon fluxes
8

Similar Publications

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Objective: This study evaluates the utility of serum s-αKlotho levels as a quantifiable biomarker for overwork.

Methods: Frontline medical workers aged 20-55 from Yiling People's Hospital of Yichang were recruited. Criteria included non-smokers, non-heavy drinkers, no chronic medication use, and no acute illnesses recently.

View Article and Find Full Text PDF

Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.

View Article and Find Full Text PDF

Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.

View Article and Find Full Text PDF

In this paper, we introduce FUSION-ANN, a novel artificial neural network (ANN) designed for acoustic emission (AE) signal classification. FUSION-ANN comprises four distinct ANN branches, each housing an independent multilayer perceptron. We extract denoised features of speech recognition such as linear predictive coding, Mel-frequency cepstral coefficient, and gammatone cepstral coefficient to represent AE signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!