AI Article Synopsis

Article Abstract

Crystalline lenses with multiple focal lengths in monochromatic light (multifocal lenses) are present in many vertebrate groups. These lenses compensate for chromatic aberration and create well-focused color images. Stabilization of the lens within the eye and the ability to adjust focus are further requirements for vision in high detail. We investigated the occurrence of multifocal lenses by photorefractometry and lens suspension structures by light and electron microscopy in sturgeons (Acipenseriformes, Chondrostei) as well as sharks and rays (Elasmobranchii, Chondrichthyes). Multifocal lenses were found in two more major vertebrate groups, the Chondrostei represented by Acipenseriformes and Chondrichthyes represented by Elasmobranchii. The lens suspension structures of sturgeons, sharks, and rays are more complex than described previously. The lens is suspended by many delicate suspensory fibers in association with a ventral papilla in all groups studied. The arrangements of the suspensory fibers are most similar between sturgeons and sharks. In rays, the lens is suspended by a smaller ventral papilla and the suspensory fibers are arranged more concentrically to the lens.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.20020DOI Listing

Publication Analysis

Top Keywords

sharks rays
16
sturgeons sharks
12
lens suspension
12
multifocal lenses
12
suspensory fibers
12
crystalline lenses
8
vertebrate groups
8
suspension structures
8
lens suspended
8
ventral papilla
8

Similar Publications

Fungal diseases, despite their low incidence in sharks and rays, are considered emerging diseases in this group of animals and can lead to high mortality rates despite treatment. The information available related to the treatment of fungal diseases in elasmobranchs is limited and is frequently based on the empirical knowledge provided by the professionals and clinicians working with these species. The use of azole antifungal drugs, especially voriconazole, has shown promise as a potential treatment option for fungal infections in elasmobranchs, with favorable outcomes in some registered cases.

View Article and Find Full Text PDF

Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs).

View Article and Find Full Text PDF

There is global awareness that many species of elasmobranchs (sharks and rays) have life history characteristics that make them susceptible to overexploitation. The study of these animals is critical, as it contributes to increasing knowledge of these specimens and aids in their conservation. In particular, growth rate, age, fecundity, and size at maturity are key parameters for defining management and conservation strategies in elasmobranchs.

View Article and Find Full Text PDF

The variable domain of IgNAR shows great potential in biological medicine and therapy. IgNAR has been discovered in sharks and rays, with the nurse shark () IgNARs being the most extensively studied among sharks. Despite being identified in nurse sharks over 30 years ago, the characteristics and genomic localization of IgNAR remain poorly defined, with significant gaps even in the latest released genome data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!