Rapid molecular prenatal diagnostic methods, such as fluorescence in situ hybridization (FISH), quantitative fluorescence-PCR, and multiplex ligation-dependent probe amplification, can detect common fetal aneuploidies within 24 to 48 h. However, specific diagnosis or aneuploidy exclusion should be ideally available within the same day as fetal sampling to alleviate parental anxiety. Microfluidic technologies integrate different steps into a microchip, saving time and costs. We have developed a cost-effective, same-day prenatal diagnostic FISH assay using microfluidics. Amniotic fluids (1-4 mL from 40 pregnant women at 15-22 weeks of gestation) were fixed with Carnoy's before loading into the microchannels of a microfluidic FISH-integrated nanostructured device. The glass slides were coated with nanostructured titanium dioxide to facilitate cell adhesion. Pretreatment and hybridization were performed within the microchannels. Fifty nuclei were counted by two independent analysts, and all results were validated with their respective karyotypes. Of the 40 samples, we found three cases of fetal aneuploidies (trisomies 13, 18, and 21), whereas the remaining 37 cases were normal. Results were concordant with their karyotypes and ready to be released within 3 h of sample receipt. Microfluidic FISH, using 20-fold less than the recommended amount of probe, is a cost-effective method to diagnose common fetal aneuploidies within the same day of fetal sampling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.2946DOI Listing

Publication Analysis

Top Keywords

fetal aneuploidies
12
same-day prenatal
8
situ hybridization
8
prenatal diagnostic
8
common fetal
8
day fetal
8
fetal sampling
8
fetal
5
prenatal diagnosis
4
diagnosis common
4

Similar Publications

Preimplantation genetic diagnosis (PGD) is provided by majority of reproductive clinics in the United States (US), and PGD is used in many in vitro fertilization (IVF) procedures every year. PGD is extensively used to screen for certain genetic abnormalities and aneuploidy in individuals undergoing IVF. Genetic disorders are very prevalent in Saudi Arabia.

View Article and Find Full Text PDF

Objective: To explore the clinical phenotype, pregnancy outcome and follow-up of fetuses with 15q11.2BP1-BP2 microdeletions in order to provide a basis for prenatal and reproductive consultation.

Methods: From March 2019 to December 2023, 20 fetuses who were diagnosed with 15q11.

View Article and Find Full Text PDF

Objective: To explore the clinical significance of trisomy 7 signaled by non-invasive prenatal testing (NIPT).

Methods: Pregnant women with high risk for trisomy 7 by NIPT from January 2017 to December 2023 were selected as the study subjects, and the results of prenatal diagnosis and follow-up were analyzed. Literature related to pregnant women with a high risk for trisomy 7 by NIPT from January 2016 to July 2024 was retrieved from China Biomedical Literature Database, Wanfang Database, China National Knowledge Infrastructure and PubMed database.

View Article and Find Full Text PDF

Rho(D) immune globulin shortage and fetal Rh(D) screening with cell-free DNA.

Curr Opin Obstet Gynecol

December 2024

University of North Carolina School of Medicine, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Chapel Hill, North Carolina, USA.

Purpose Of Review: Despite the availability of Rh(D) immune globulin (RhIg) to prevent alloimmunization in Rh(D)-negative pregnant patients, anti-Rh(D) alloimmunization remains a prevalent cause of hemolytic disease of the fetus and newborn (HDFN). Recent RhIg shortages have caused clinicians and professional societies to identify methods to prioritize RhIg administration. New cell-free DNA (cfDNA) tests to predict fetal red blood cell antigen genotypes have been proposed as an option to prioritize the administration of RhIg to Rh(D)-negative pregnant people.

View Article and Find Full Text PDF

Prenatal cfDNA Sequencing and Incidental Detection of Maternal Cancer.

N Engl J Med

December 2024

From the Prenatal Genomics and Therapy Section, Center for Precision Health Research (A.E.T., D.W.B.), and the Section on Social Network Methods, Social and Behavioral Research Branch (J.L.), National Human Genome Research Institute, the Women's Malignancies Branch (C.M.A., I.S.G., P.S.R.) and the Cancer Data Science Laboratory (P.S.R.), Center for Cancer Research, National Cancer Institute, Radiology and Imaging Sciences, Clinical Center (A.A.M., B.R.), and the Office of the Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.W.B.), National Institutes of Health, Bethesda, and Leidos Biomedical Research, Frederick (M.P.) - both in Maryland.

Background: Cell-free DNA (cfDNA) sequence analysis to screen for fetal aneuploidy can incidentally detect maternal cancer. Additional data are needed to identify DNA-sequencing patterns and other biomarkers that can identify pregnant persons who are most likely to have cancer and to determine the best approach for follow-up.

Methods: In this ongoing study we performed cancer screening in pregnant or postpartum persons who did not perceive signs or symptoms of cancer but received unusual clinical cfDNA-sequencing results or results that were nonreportable (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!