In atomic force microscopy a cantilever with a sharp tip attached to it is scanned over the surface of a sample, and information about the surface is extracted by measuring how the deflection of the cantilever - which is caused by interactions between the tip and the surface - varies with position. In the most common form of atomic force microscopy, dynamic force microscopy, the cantilever is made to vibrate at a specific frequency, and the deflection of the tip is measured at this frequency. But the motion of the cantilever is highly nonlinear, and in conventional dynamic force microscopy, information about the sample that is encoded in the deflection at frequencies other than the excitation frequency is irreversibly lost. Multifrequency force microscopy involves the excitation and/or detection of the deflection at two or more frequencies, and it has the potential to overcome limitations in the spatial resolution and acquisition times of conventional force microscopes. Here we review the development of five different modes of multifrequency force microscopy and examine its application in studies of proteins, the imaging of vibrating nanostructures, measurements of ion diffusion and subsurface imaging in cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2012.38 | DOI Listing |
Polymers (Basel)
December 2024
Medical College, Inner Mongolia Minzu University, Tongliao 028043, China.
The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China.
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Nuclear Physics Institute of CAS, v.v.i., Husinec-Řež 130, 250 68 Řež, Czech Republic.
Two-dimensional molybdenum disulfide (MoS) exhibits interesting properties for applications in micro and nano-electronics. The key point for sensing properties of a device is the quality of the material's surface. In this study, MoS layers were deposited on polymers by pulsed laser deposition (PLD).
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
The selective depolymerization of β-O-4 lignin models into high-value aromatic monomers using photocatalysis presents both significant opportunities and challenges. Photocatalysts often face issues such as high photogenerated carrier recombination rates and limited operational lifetimes. This study introduces S doping to modulate the surface interface of BiOCl (BOC) nanosheets, enhancing C-O bond cleavage efficiency in β-O-4 lignin models under visible light at ambient temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!