Agricultural contaminants are suspected of contributing to the increased incidence of deformities and the decline of amphibians populations worldwide. Many authors have further suggested that a retinoid effect could be implicated in teratogenic mechanisms since the reported deformities resemble those caused by abnormal levels of retinoic acid (RA). We previously reported altered retinoid concentrations in male bullfrogs from the Yamaska River basin (Québec, Canada) associated with moderate-to-high agricultural activity, and the findings were consistent with a possible effect on hepatic RA oxidation. An in vitro assay was therefore optimized and hepatic microsomal RA oxidation in bullfrogs was found to be quite different from that of other vertebrates. With either all-transRA (atRA) or 13cisRA as the substrate, the major metabolite generated was at4-oxo-RA. The reaction with 13cisRA as substrate, markedly greater compared with atRA, was enhanced in the presence of a reducing agent and inhibited by cytochrome P450 inhibitors in a dose-dependent manner. Hepatic RA oxidation in male bullfrogs showed significant differences between sites with no clear relationship to a gradient of agricultural activity or 13cis-4-oxo-RA quantified in plasma. In contrast, the in vitro RA oxidation in females increased with the levels of contamination and coincided in vivo with higher plasma 13cis-4-oxo-RA concentration. The levels of circulating 4-oxo-derivatives could be influenced by hepatic RA oxidative metabolism as well as isomerization conditions or RA precursor levels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-012-0889-0DOI Listing

Publication Analysis

Top Keywords

gradient agricultural
8
male bullfrogs
8
agricultural activity
8
hepatic oxidation
8
13cisra substrate
8
oxidation
5
hepatic
5
oxidation retinoic
4
retinoic acids
4
acids hepatic
4

Similar Publications

A new selective and sensitive high-performance liquid chromatography (HPLC) method was developed for the quantification of potential impurities in fluoxetine hydrochloride. Chromatographic separation was achieved on an end-capped octadecylsilyl silica gel (Gemini-C18 150 mm × 4.6 mm, 3.

View Article and Find Full Text PDF

Atmospheric nitrous oxide (NO) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO. NO emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of NO emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of NO emissions using structural equation modeling.

View Article and Find Full Text PDF

Eastern North Carolina has been subjected to widespread water quality degradation for decades, notably throughout the Cape Fear River Watershed, owing largely to the magnitude of concentrated animal feeding operations (CAFOs) in the region. Long-term nutrient monitoring data from numerous locations throughout southeastern North Carolina have shown significantly elevated organic nitrogen (Org-N) concentrations starting around the year 2000-a concerning development, as labile Org-N can stimulate algal blooms and subsequent bacterial production, thus enhancing eutrophication in freshwater systems. By measuring the stable isotope signatures (δC, δN) of particulate organic matter sampled from a range of southeastern North Carolina waters, the predominant sources to the observed Org-N loadings were elucidated.

View Article and Find Full Text PDF

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF

This study investigates the effects of physical and chemical soil degradation on crop productivity in the Watershed. The watershed was categorized into level, sloping, and steep slope gradients. Within each slope gradient, one cultivated land managed with soil and water conservation and one cultivated land without soil and water conservation were selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!