Pentacarbonyl(2-methylpyrazine)chromium(0) [Cr(CO)(5)(2mpyz)], complex was isolated from its n-hexane solution as orange plate-like crystals which were characterized by IR, NMR spectroscopies and X-ray crystallography. The crystallographic results show that the complex was crystallized in the monoclinic system with the unit cell parameters of a=7.176 (5), b=12.045 (3), c=14.461 (3)Å, β=90.44 (3)° and space group 2/M. The single crystal structure of the complex shows the bonding of chromium metal to 2-methylpyrazine through the less sterically hindered nitrogen-4 lone pair. The pyrazine ring plane makes an angle of 179.58° (19) with COCrN bond axis. The four carbonyl groups are slightly bent away from pyrazine with the angle of 91.28° (17) for C(5)CrN1 bond axis. The DFT calculations run out using the Gaussian 03 PC program show good agreement with the experimental results. The thermal properties of the complex were also investigated by differential thermal analysis and thermogravimetry techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2012.02.037 | DOI Listing |
Chem Asian J
January 2025
East China University of Science and Technology, Institute of Fine Chemicals, Meilong Road, 200237, Shanghai, CHINA.
Oxidation of thia-pentapyrrane S-P4 with terminal β-linked pyrrole and thiophene units in the presence of various metal ions has been found to afford distinct porphyrinoids. Specifically, N-confused thiasapphyrin (1), Cu(III) norrole (2), neo-confused phlorin (3), and p-benzinorrole (4) were obtained, when S-P4 was oxidized with p-chloranil in acetonitrile in the presence of Ni2+, Cu2+, Cd2+, and Co2+, respectively. The structures of 1-4 have been clearly elucidated by NMR spectroscopy, HRMS, and X-ray crystal diffraction (for 2-4).
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA.
We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.
View Article and Find Full Text PDFNat Commun
January 2025
NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China.
The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:
Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!