Although affective disorders have high prevalence, morbidity and mortality, we do not fully understand disease etiopathology, nor have we determined the exact mechanisms by which treatment works. Recent research indicates that intracellular calcium ion dysfunction might be involved. Here we use the chronic restraint stress model of affective disorder (6 h restraint per day for 21 days) in combination with electroconvulsive stimulations to examine the effects of stress and an effective antidepressive treatment modality on L-type voltage gated calcium channel subunit mRNA expression patterns in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3, while stress only upregulated Ca(v)1.3 channel expression significantly in the dentate gyrus. ECS effects on Ca(v)1.2 channel expression were generally specific to stressed animals. Our findings are consistent with and extent previous studies on the involvement of intracellular calcium ion dysfunction in affective disorders. Selective modulation of neuronal L-type voltage gated calcium channels appears to be a promising target for the development of novel antidepressive treatment modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2012.03.043 | DOI Listing |
Epilepsia Open
January 2025
Neurology Department, Wellstar MCG Health at the Medical College of Georgia, Augusta, Georgia.
New Onset Refractory Status Epilepticus (NORSE) is a rare and severe condition characterized by refractory seizures in individuals without a prior history of epilepsy. This case report describes a 37-year-old woman diagnosed with anti-glutamic acid decarboxylase 65 (anti-GAD65) antibody-positive encephalitis-related NORSE. Her seizures were refractory to multiple interventions, including anti-seizure medications, anesthetics, immunotherapies, a ketogenic diet, and electroconvulsive therapy.
View Article and Find Full Text PDFAnn Gen Psychiatry
January 2025
Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Background: Seizure threshold increases with age and the frequency of electroconvulsive therapy (ECT). Therefore, therapeutic seizures can be difficult to induce, even at maximum stimulus charge with available ECT devices. Such cases are known as difficult-to-induce-seizures electroconvulsive therapy cases (DECs).
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei 114, Taiwan.
Cognitive deficits are emerging as critical targets for managing schizophrenia and enhancing clinical and functional outcomes. These deficits are pervasive among individuals with schizophrenia, affecting various cognitive domains. Traditional pharmacotherapy and cognitive behavioral therapy (CBT) have limitations in effectively addressing cognitive impairments in this population.
View Article and Find Full Text PDFBehav Sci (Basel)
December 2024
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazza Aldo Moro, 100165 Rome, Italy.
Bipolar disorder is a debilitating psychiatric condition characterized by recurrent episodes of mania and depression, affecting millions worldwide. While pharmacotherapy remains the cornerstone of treatment, a significant proportion of patients exhibit inadequate response or intolerable side effects to conventional medications. In recent years, neuromodulation techniques have emerged as promising adjunctive or alternative treatments for bipolar disorder.
View Article and Find Full Text PDFBackground: Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.
Objective: The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!