Medium-throughput profiling method for screening polysaccharide-degrading enzymes in complex bacterial extracts.

J Microbiol Methods

Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, F-29682 Roscoff Cedex, France.

Published: June 2012

AI Article Synopsis

Article Abstract

Polysaccharides are the most abundant and the most diverse renewable materials found on earth. Due to the stereochemical variability of carbohydrates, polysaccharide-degrading enzymes - i.e. glycoside hydrolases and polysaccharide lyases - are essential tools for resolving the structure of these complex macromolecules. The exponential increase of genomic and metagenomic data contrasts sharply with the low number of proteins that have ascribed functions. To help fill this gap, we designed and implemented a medium-throughput profiling method to screen for polysaccharide-degrading enzymes in crude bacterial extracts. Our strategy was based on a series of filtrations, which are absolutely necessary to eliminate any reducing sugars not directly generated by enzyme degradation. In contrast with other protocols already available in the literature, our method can be applied to any panel of polysaccharides having known and unknown structures because no chemical modifications are required. We applied this approach to screen for enzymes that occur in Pseudoalteromonas carrageenovora grown in two culture conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2012.03.004DOI Listing

Publication Analysis

Top Keywords

polysaccharide-degrading enzymes
12
medium-throughput profiling
8
profiling method
8
bacterial extracts
8
method screening
4
screening polysaccharide-degrading
4
enzymes
4
enzymes complex
4
complex bacterial
4
extracts polysaccharides
4

Similar Publications

Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate Persistence.

Int J Mol Sci

January 2025

Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.

is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by .

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF

Specialized Bacteroidetes dominate the Arctic Ocean during marine spring blooms.

Front Microbiol

November 2024

Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.

Article Synopsis
  • A study analyzed how bacterioplankton in Arctic seawater changed during a summer phytoplankton bloom, revealing that specialized bacterial clades like Bacteroidetes became dominant.
  • Bacteroidetes not only displaced other microorganisms typically found in nutrient-poor waters, but also showed enhanced abilities to break down polysaccharides, particularly those from algae.
  • The research identified specific proteins and genetic adaptations in Bacteroidetes, indicating their specialization in utilizing polysaccharides during these bloom events.
View Article and Find Full Text PDF

The emergence of multidrug-resistant Acinetobacter baumannii (MDR-AB), which most commonly manifests as pneumonia, has posed significant clinical challenges and called for novel treatment strategies. Phage depolymerases, which degrade bacterial surface carbohydrates, have emerged as potential antimicrobial agents. However, their preclinical application is limited to systemic infections due to their dependency on serum-mediated bacterial killing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!