Background: A critical issue for constructing a progressive rehabilitation program is the knowledge of muscle activation levels across exercises and within exercise modifications. Many exercises are offered to enhance gluteal muscle activation during functional rehabilitation but little data exists to guide the progression of exercise intensity during rehabilitation. The objective of this paper was to examine the effects of altering resistance band placement during 'Monster Walks' and 'Sumo Walks.'
Methods: Nine healthy male volunteers formed a convenience sample. Sixteen electromyography channels measured neural drive of selected muscles of the right hip and torso muscles. Three resistance band placements (around the knees, ankles and feet) during the two exercises were utilized to provide a progressive resistance to the gluteal muscles while repeated measures ANOVA with Bonferroni adjustment was used to assess differences in mean EMG. The presentation of exercises and band placement were randomized.
Findings: Examining muscle activation profiles in the three hip muscles of interest revealed the progressive nature of the neural drive when altering band placement. Tensor fascia latae (TFL) demonstrated a progressive activation moving the band from the knee to the distal band placement, but not between the ankle and foot placements. Gluteus medius demonstrated a progressive activation moving distally between band placements. Gluteus maximus was preferentially activated only during the foot placement.
Interpretation: The band placements offered a progressive increase in resistance for hip rehabilitation, specifically the gluteal muscles. The added benefit of placing the band around the forefoot was selective enhancement of the gluteal muscles versus TFL presumably by adding an external rotation effort to the hips. This information may assist those who address gluteal activation patterns for patients suffering hip and back conditions where gluteal activation has been affected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2012.03.002 | DOI Listing |
Alzheimers Dement
December 2024
University of California, Los Angeles, CA, USA.
Background: Dementia exhibits abnormal network activity, including altered gamma frequency (30-100 Hz) in Alzheimer's disease (AD). A non-pharmacological, non-invasive approach to AD treatment involves stimulating sensory inputs using gamma band, with 40 Hz as the most effective in eliciting a robust EEG response. Light and sound stimulation at 40 Hz reduces AD pathology in mouse models and improves cognition in humans with AD.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
December 2024
Division of Cardiovascular Medicine, Cardiac Electrophysiology Section, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Introduction: Intracardiac echocardiography (ICE) is an essential imaging modality for electrophysiology procedures, allowing intraprocedural monitoring, real-time catheter manipulation guidance, and visualization of complex anatomic structures. Four-dimentional (4D) ICE is the next stage in the evolution of the technology, permitting 360° rotation of the imaging plane, simultaneous multiplanar imaging, and volumetric acquisition, similar to transesophageal echocardiography (TEE). In this study, we report our experience with a novel 4D ICE catheter (NuVision, Biosense Webster) in structural electrophysiology procedures and difficult ventricular ablations in a swine preclinical model.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of Animal and Food Science, University of Wisconsin - River Falls, River Falls, WI 54022, USA.
Yaks are a domesticated species utilized for meat, fiber, and transportation in many countries. In the United States, yak meat is growing in popularity due to its classification as a "healthy" meat. Penetrating captive bolt (PCB) is an approved method of preslaughter stunning and euthanasia for cattle.
View Article and Find Full Text PDFCureus
November 2024
Biostatistics, The Oxford Center, Brighton, USA.
Severe traumatic brain injury (TBI) poses significant public health challenges, but treatments like neurofeedback and hyperbaric oxygen therapy (HBOT) show promise in aiding recovery. Neurofeedback enhances brain healing through operant conditioning, while HBOT increases cerebral oxygenation, supporting cognitive recovery. A 33-year-old woman, after suffering a severe TBI in 2018 and a long rehabilitation, began HBOT and neurofeedback in late 2021.
View Article and Find Full Text PDFJBJS Essent Surg Tech
December 2024
Sports Medicine Center, Department of Orthopaedics, Massachusetts General Hospital, Mass General Brigham, Boston, Massachusetts.
Background: Whereas uncomplicated labral tears with preserved fibers can be effectively treated with use of labral repair techniques, complex tears and hypoplastic labra require labral reconstruction. Standard reconstruction techniques feature grafted tissue that is added to existing, deficient tissue or that is utilized to replace a hypoplastic labrum entirely. However, such approaches utilizing allografts or remote autografts are limited because they often necessitate extensive debridement of the existing labrum to prepare a site for graft implantation, an approach that can damage and devascularize the chondrolabral junction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!