Monoclinic BiVO(4) single-crystallites with a polyhedral, spherical or porous octapod-like morphology were selectively prepared using the triblock copolymer P123 (HO(CH(2)CH(2)O)(20)(CH(2)CH(CH(3))O)(70)(CH(2)CH(2)O)(20)H)-assisted hydrothermal method with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The BiVO(4) materials were well characterized and their photocatalytic activities were evaluated for the removal of methylene blue (MB) and phenol in the presence of a small amount of H(2)O(2) under visible-light illumination. It is shown that the pH value of the precursor solution, surfactant, and hydrothermal temperature had an important impact on particle architecture of the BiVO(4) product. The introduction of P123 favored the generation of BiVO(4) with porous structures. The BiVO(4) derived hydrothermally with P123 at pH 3 or 6 possessed good optical absorption performance both in UV- and visible-light regions and hence showed excellent photocatalytic activities for the degradation of MB and phenol. It is concluded that the high visible-light-driven catalytic performance of the porous octapod-like BiVO(4) single-crystallites is associated with the higher surface area, porous structure, lower band gap energy, and unique particle morphology. Such porous BiVO(4) materials are useful in the solar-light-driven photocatalytic treatment of organic-containing wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2012.02.073 | DOI Listing |
Adv Mater
January 2025
School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China.
Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO surfaces (Ov-BiVO), enabling interactions with the oxygen-rich ligands of MIL-101.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Photoelectrochemical cells (PECs) can directly utilize solar energy to drive chemical reactions to produce fuels and chemicals. Oxide-based photoelectrodes in general exhibit enhanced stability against photocorrosion, which is a critical advantage for building a sustainable PEC. However, most oxide-based semiconductors are n-type, and p-type oxides that can be used as photocathodes are limited.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China.
As modification strategies are actively developed, the photothermal effect is expected to be a viable way to enhance the PEC water splitting performance. Herein, we demonstrate that the photothermal polyaniline (PANI) layer inserted between CoF cocatalyst and BiVO can enhance the photocurrent density of pure BiVO by 3.50 times.
View Article and Find Full Text PDFDalton Trans
January 2025
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany.
Doping and surface-modification are well-established strategies for the performance enhancement of bismuth vanadate (BiVO) photoanodes in photoelectrochemical (PEC) water splitting devices. Herein, a "double-use" strategy for the development of high-performance BiVO photoanodes for solar water splitting is reported, where a molecular cobalt-phosphotungstate (CoPOM = Na[Co(HO)(PWO)]) is used both as a bulk doping agent as well as a surface-deposited water oxidation cocatalyst. The use of CoPOM for bulk doping of BiVO is shown to enhance the electrical conductivity and improve the charge separation efficiency, resulting in the enhancement of the maximum applied-bias photoconversion efficiency (ABPE) by a factor of ∼18 to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!