Present study investigated the applicability of ordered TiO(2) nanotube arrays for the enrichment and determination of polychlorinated biphenyls (PCBs) in water samples. A new and reliable method was developed for the preconcentration and determination of PCBs by micro-solid phase equilibrium extraction in combination with gas chromatography and electron capture detection (GC-ECD), which exploited the special physical and chemical properties of ordered TiO(2) nanotube arrays. The experimental results indicated that low LODs were easily achieved in the range of 0.02-0.10 μg L(-1) for PCB-28, PCB-52, PCB-101, PCB-153, PCB-138, and PCB-180. The proposed method was validated with several real water samples, and good spiked recoveries have been obtained in the range of 95.8-110.5%. The experimental results demonstrated that TiO(2) nanotube arrays could be reused for over 200 times without the lost of the extraction efficiency. All these showed that TiO(2) nanotube arrays would be very useful in the enrichment and determination of trace pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2012.02.066DOI Listing

Publication Analysis

Top Keywords

tio2 nanotube
16
nanotube arrays
16
enrichment determination
12
water samples
12
determination polychlorinated
8
polychlorinated biphenyls
8
ordered tio2
8
arrays enrichment
8
nanotube
5
investigation applicability
4

Similar Publications

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.

View Article and Find Full Text PDF

Thermal decomposition synthesis of CuO on TiO NTs as promising photocatalysts for effective photoelectrocatalytic hydrogen evolution and pollutant removal.

Environ Res

January 2025

College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:

The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.

View Article and Find Full Text PDF

The current work outlines the preparation of a TiO nanotube (NT) layer electrochemically formed on the surface of a clinically-relevant titanium alloy anodisation. This NT layer was subsequently modified alternating current electrodeposition to incorporate copper micro- and nanoparticles on top of and within the NTs. Physical characterisation of the NT layer and the copper-incorporated NTs was carried out through analysis of the surface morphology, elemental composition, crystallinity, and stability SEM, EDX, XRD, and ICP-OES, respectively.

View Article and Find Full Text PDF

We present a novel approach for enhancing photocatalytic efficiency by developing polyaniline (PANI) and polyindole (PIN)-coated TiO nanotubes (TNT) through a combination of chemical oxidation and hydrothermal processes. The PANI-PIN coating was systematically applied to both the internal and external surfaces of the nanotubes to enhance the photocatalytic active sites and optimize pollutant adsorption. The dual-coated structure enhances the interaction with pollutants, facilitating a more efficient degradation of 4-nitrophenol (4-NP) when exposed to visible light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!