In this paper, a sensitive and selective sensor for detecting colon cancer cells based on nanoparticle covalent modified anti-human epithelial cell adhesion molecule (EpCAM) antibody is developed. The transmission electron microscope (TEM) images showed that the nanoparticle and functionalized nanoparticle had good decentrality for application. The NaIO(4) oxidation method, which was used as oxidizing antibody for immobilization of conjugating antibody on the silica-coated fluorescent nanoparticles, maintained the activities of antibodies very well. The fluorescence microscopy imaging and flow cytometer (FCM) experiments demonstrated that the nanosensor could increase the signal intensity obviously and distinguish three kinds of target cells (colo205, sw480 and NCM460) well. The membrane and nuclear staining showed the distribution and abundance of EpCAM in cells' membrane. It also provides a possibility to quantify special membrane proteins on different regions of cells' surface. At the end, the result of detecting a simple sample proved that colo205 cells were selected by anti-EpCAM antibody nanosensors in this environment, and made a good foundation for subsequent research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2012.02.044DOI Listing

Publication Analysis

Top Keywords

cell adhesion
8
adhesion molecule
8
colon cancer
8
cancer cells
8
antibody
5
anti-epithelial cell
4
molecule monoclonal
4
monoclonal antibody
4
antibody conjugated
4
conjugated fluorescent
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!