Rationale And Objectives: Although contrast-enhanced ultrasound imaging techniques such as harmonic imaging (HI) have evolved to reduce tissue signals using the nonlinear properties of the contrast agent, levels of background suppression have been mixed. Subharmonic imaging (SHI) offers near complete tissue suppression by centering the receive bandwidth at half the transmitting frequency. The aims of this study were to demonstrate the feasibility of three-dimensional (3D) SHI and to compare it to 3D HI.
Materials And Methods: Three-dimensional HI and SHI were implemented on a Logiq 9 ultrasound scanner with a 4D10L probe. Four-cycle SHI was implemented to transmit at 5.8 MHz and receive at 2.9 MHz, while two-cycle HI was implemented to transmit at 5 MHz and receive at 10 MHz. The ultrasound contrast agent Definity was imaged within a flow phantom and the lower pole of two canine kidneys in both HI and SHI modes. Contrast-to-tissue ratios and rendered images were compared offline.
Results: SHI resulted in significant improvement in contrast-to-tissue ratios relative to HI both in vitro (12.11 ± 0.52 vs 2.67 ± 0.77, P< .001) and in vivo (5.74 ± 1.92 vs 2.40 ± 0.48, P = .04). Rendered 3D subharmonic images provided better tissue suppression and a greater overall view of vessels in a flow phantom and canine renal vasculature.
Conclusions: The successful implementation of SHI in 3D allows imaging of vascular networks over a heterogeneous sample volume and should improve future diagnostic accuracy. Additionally, 3D SHI provides improved contrast-to-tissue ratios relative to 3D HI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351552 | PMC |
http://dx.doi.org/10.1016/j.acra.2012.02.015 | DOI Listing |
Ultrasound Med Biol
January 2024
Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. Electronic address:
IEEE Trans Ultrason Ferroelectr Freq Control
November 2023
Superharmonic contrast imaging (SpHI) suppresses tissue clutter and allows high-contrast visualization of the vasculature. An array-based dual-frequency (DF) probe has been developed for SpHI, integrating a 21-MHz, 256-element microultrasound imaging array with a 2-MHz, 32-element array to take advantage of the broadband nonlinear responses from microbubble (MB) contrast agents. In this work, ultrafast imaging with plane waves was implemented for SpHI to increase the acquisition frame rate.
View Article and Find Full Text PDFJ Acoust Soc Am
July 2023
Department of Biomedical Engineering and Health System, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.
Contrast agents are widely used in ultrasound imaging. Many imaging techniques have been developed to improve the contrast between tissue and the agents, based on the nonlinear response of microbubbles. In this study, heterodyne excitation was introduced and was compared with traditional sinusoidal signal and chirp excitation for visualizing polymer-shelled microbubbles and degassed water in a tissue-mimicking phantom.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2023
Histotripsy is a focused ultrasound therapy that ablates tissue via bubble cloud activity. Real-time ultrasound image guidance is used to ensure safe and effective treatment. Plane-wave imaging enables tracking of histotripsy bubble clouds at a high frame rate but lacks adequate contrast.
View Article and Find Full Text PDFJ Acoust Soc Am
March 2023
Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!