Purpose: Repetitive Lumbar Injury (RLI) is common in individuals engaged in long term performance of repetitive occupational/sports activities with the spine. The triggering source of the disorder, tissues involved in the failure and biomechanical, neuromuscular, and biological processes active in the initiation and development of the disorder, are not known. The purpose is, therefore, to test, using in-vivo feline model and healthy human subjects, the hypothesis that RLI due to prolonged exposure to repetitive lumbar flexion-extension is triggered by an acute inflammation in the viscoelastic tissues and is characterized by lingering residual creep, pronounced changes in neuromuscular control and transient changes in lumbar stability. This report, therefore, is a summary of a lengthy research program consisting of multiple projects.
Methods: A series of experimental data was obtained from in-vivo feline groups and normal humans subjected to prolonged cyclic lumbar flexion-extension at high and low loads, high and low velocities, few and many repetitions, as well as short and long in-between rest periods, while recording lumbar displacement and multifidi EMG. Neutrophil and cytokines expression analysis were performed on the dissected feline supraspinous ligaments before loading (control) and 7 h post-loading. A comprehensive, time based model was designed to represent the creep, motor control, tissue biology and stability derived from the experimental data.
Results: Prolonged cyclic loading induced creep in the spine, reduced muscular activity, triggered spasms and reduced stability followed, several hours later, by acute inflammation/tissue degradation, muscular hyperexcitability and hyperstability. Fast movement, high loads, many repetitions and short rest periods, triggered the full disorder, whereas low velocities, low loads, long rest and few repetitions, triggered only minor but statistically significant pro-inflammatory tissue degradation and significantly reduced stability.
Conclusion: Viscoelastic tissue failure via inflammation is the source of RLI and is also the process which governs the mechanical and neuromuscular characteristic symptoms of the disorder. The experimental data validates the hypothesis and provides insights into the development of potential treatments and prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbmt.2011.08.005 | DOI Listing |
Prog Rehabil Med
January 2025
Department of Rehabilitation Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Repetitive manual labor tasks involving twisting, bending, and lifting commonly lead to lower back and knee injuries in the workplace. To identify tasks with high injury risk, we recruited N = 9 participants to perform industry-relevant, 2-handed lifts with a 11-kg weight. These included symmetrical/asymmetrical, ascending/descending lifts that varied in start-to-end heights (knee-to-waist and waist-to-shoulder).
View Article and Find Full Text PDFActa Orthop
January 2025
Helsinki New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
: Long-term work-related musculoskeletal disorders are predominantly influenced by factors such as the duration, intensity, and repetitive nature of load lifting. Although traditional ergonomic assessment tools can be effective, they are often challenging and complex to apply due to the absence of a streamlined, standardized framework. Recently, integrating wearable sensors with artificial intelligence has emerged as a promising approach to effectively monitor and mitigate biomechanical risks.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy.
: Musculoskeletal disorders affect a large portion of the population worldwide. The Musculoskeletal Health Questionnaire (MSK-HQ) is a helpful tool for assessing the health state of patients with these disorders. The primary goal of this study is to evaluate the psychometric properties of the MSK-HQ-IT in a population of kitesurfers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!