We investigate the role played by electron-hole pair and phonon excitations in the interaction of reactive gas molecules and atoms with metal surfaces. We present a theoretical framework that allows us to evaluate within a full-dimensional dynamics the combined contribution of both excitation mechanisms while the gas particle-surface interaction is described by an ab initio potential energy surface. The model is applied to study energy dissipation in the scattering of N(2) on W(110) and N on Ag(111). Our results show that phonon excitation is the dominant energy loss channel, whereas electron-hole pair excitations represent a minor contribution. We substantiate that, even when the energy dissipated is quantitatively significant, important aspects of the scattering dynamics are well captured by the adiabatic approximation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.096101DOI Listing

Publication Analysis

Top Keywords

phonon excitations
8
metal surfaces
8
electron-hole pair
8
competition electron
4
electron phonon
4
excitations scattering
4
scattering nitrogen
4
nitrogen atoms
4
atoms molecules
4
molecules tungsten
4

Similar Publications

Resonant pumping of the electronic f-f transitions in the orbital multiplet of dysprosium ions (Dy^{3+}) in a complex perovskite DyFeO_{3} is shown to impulsively launch THz lattice dynamics corresponding to the B_{2g} phonon mode, which is dominanted by the motion of Dy^{3+} ions. The findings, supported by symmetry analysis and density-functional theory calculations, not only provide a novel route for highly selective excitation of the rare-earth crystal lattices but also establish important relationships between the symmetry of the electronic and lattice excitations in complex oxides.

View Article and Find Full Text PDF

Chiral Phonons Induced from Spin Dynamics via Magnetoelastic Anisotropy.

Phys Rev Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • The proposed mechanism generates chiral phononlike excitations through magnetoelastic couplings without needing magnetic fields or out-of-plane magnetization.
  • By analyzing a triangular lattice ferromagnet, the research reveals how lattice symmetry influences chirality, linking it to topological phonon classes.
  • The study suggests potential applications in spintronics and phononics, emphasizing the experimental viability of measuring phonon magnetization and thermal Hall conductivity in anisotropic magnets.
View Article and Find Full Text PDF

CuZnSn(S,Se) (CZT(S,Se)) thin films exhibit the characteristics necessary to be effective absorbers in solar cells. In this report, the room temperature experimental Raman scattering spectra, recorded at different excitation wavelengths, are systematically analyzed theoretically using the results of DFT harmonic frequencies calculations at the Γ-point for various modifications of kesterite (KS), stannite (ST), and pre-mixed Cu-Au (PMCA) crystal structures. The specific anharmonism-induced features in the spectra of CZT(S,Se) crystals are identified, and the spectral lineshapes at varied strengths of anharmonic interaction are simulated.

View Article and Find Full Text PDF

Multilayered metal-dielectric nanostructures display both a strong plasmonic behavior and hyperbolic optical dispersion. The latter is responsible for the appearance of two separated radiative and nonradiative channels in the extinction spectrum of these structures. This unique property can open plenty of opportunities toward the development of multifunctional systems that simultaneously can behave as optimal scatterers and absorbers at different wavelengths, an important feature to achieve multiscale control of light-matter interactions in different spectral regions for different types of applications, such as optical computing or detection of thermal radiation.

View Article and Find Full Text PDF

Ultrafast Thermal Switching Enabled by Transient Polaritons.

ACS Nano

December 2024

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!