Positron annihilation on many molecules occurs via positron capture into vibrational Feshbach resonances, with annihilation rates often further enhanced by energy transfer to vibrational excitations weakly coupled to the positron continuum. Data presented here uncover another scenario in which the positron couples directly to a quasicontinuum of multimode vibrational states. A model that assumes excitation and escape from a statistically complete ensemble of multimode vibrations is presented that reproduces key features of the data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.093201DOI Listing

Publication Analysis

Top Keywords

multimode vibrational
8
ubiquitous nature
4
nature multimode
4
vibrational
4
vibrational resonances
4
resonances positron-molecule
4
positron-molecule annihilation
4
positron
4
annihilation positron
4
positron annihilation
4

Similar Publications

Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.

Nat Commun

January 2025

Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.

View Article and Find Full Text PDF

Nonlinear coupling of closely spaced modes in atomically thin MoS nanoelectromechanical resonators.

Microsyst Nanoeng

December 2024

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.

Nanoelectromechanical systems (NEMS) incorporating atomic or molecular layer van der Waals materials can support multimode resonances and exotic nonlinear dynamics. Here we investigate nonlinear coupling of closely spaced modes in a bilayer (2L) molybdenum disulfide (MoS) nanoelectromechanical resonator. We model the response from a drumhead resonator using equations of two resonant modes with a dispersive coupling term to describe the vibration induced frequency shifts that result from the induced change in tension.

View Article and Find Full Text PDF

It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling.

View Article and Find Full Text PDF

Thermal Shielding GdTaO-Based Thermal Barrier Ceramic with Ultralow NIR Transmittance.

Small

January 2025

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Institute for Advanced Ceramics, Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150080, China.

Most thermal barrier coating materials exhibit transparent/semi-transparent properties at higher temperatures, causing the surface heat flow to directly heat the substrate with infrared radiation, which significantly reduces the thermal barrier effectiveness. Herein, composite ceramic materials composed of GdFeO diffusely dispersed within the GdTaO are produced. Specifically, the 0.

View Article and Find Full Text PDF

Vibrational and Magnetic States of Point Defects in Bilayer MoSe.

J Am Chem Soc

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Defects in two-dimensional materials like MoSe affect their physical and chemical properties, making atomic-scale characterization crucial.
  • Researchers utilized spectroscopic imaging scanning tunneling microscopy to investigate how Mo antisite and V vacancy defects behave differently depending on their charge states in MoSe bilayers on graphene.
  • The study found that these defects can generate a local magnetic moment and could lead to advancements in material engineering and spin-based applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!