We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.092502 | DOI Listing |
Phys Rev Lett
October 2024
Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany and Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland.
Recent measurements of high-momentum correlated neutron-proton pairs at JLab suggest that the dense nucleonic component of the compact stars contains a fraction of high-momentum neutron-proton pairs that is not accounted for in the familiar Fermi-liquid theory of the neutron-proton fluid mixture. We compute the rate of the Urca process in compact stars taking into account the non-Fermi liquid contributions to the proton's spectral widths induced by short-range correlations. The Urca rate differs strongly from the Fermi-liquid prediction at low temperatures; in particular, the high threshold on the proton fraction precluding the Urca process in neutron stars is replaced by a smooth increase with the proton fraction.
View Article and Find Full Text PDFPhys Rev Lett
March 2023
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy.
We present a theoretical study of the processes d(d,p)^{3}H and d(d,n)^{3}He at energies of interest for energy production and for big-bang nucleosynthesis. We accurately solve the four body scattering problem using the ab initio hyperspherical harmonics method, starting from nuclear Hamiltonians which include modern two- and three-nucleon interactions, derived in chiral effective field theory. We report results for the astrophysical S factor, the quintet suppression factor, and various single and double polarized observables.
View Article and Find Full Text PDFNature
September 2022
Department of Physics, University of Virginia, Charlottesville, VA, USA.
When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure, and mapping out the strength and the isospin structure (neutron-proton (np) versus proton-proton (pp) pairs) of these virtual excitations is thus critical input for modelling a range of nuclear, particle and astrophysics measurements.
View Article and Find Full Text PDFNature
February 2020
Thomas Jefferson National Accelerator Facility, Newport News, VA, USA.
The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances but not at shorter distances.
View Article and Find Full Text PDFPhys Rev Lett
May 2019
University of Virginia, Charlottesville, Virginia 22901, USA.
We measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5 (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400 MeV/c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!