Multimode nonclassical states of light are an essential resource in quantum computation with continuous variables, for example, in cluster state computation. We report in this Letter the first experimental evidence of a multimode nonclassical frequency comb in a femtosecond synchronously pumped optical parametric oscillator. In addition to a global reduction of its quantum intensity fluctuations, the system features quantum correlations between different parts of its frequency spectrum. This allows us to show that the frequency comb is composed of several uncorrelated eigenmodes having specific spectral shapes, two of them at least being squeezed, and to characterize their spectral shapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.083601 | DOI Listing |
Multiple photon addition and subtraction applied to multi-mode thermal and sub-Poissonian fields as well as twin beams are mutually compared using one experimental setup. Twin beams (TWBs) with tight spatial correlations detected by an intensified CCD camera with high spatial resolution are used to prepare the initial fields. Up to three photons are added or subtracted to arrive at the nonclassical and non-Gaussian states.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA.
Gaussian states with nonclassical properties such as squeezing and entanglement serve as crucial resources for quantum information processing. Accurately quantifying these properties within multimode Gaussian states has posed some challenges. To address this, we introduce a unified quantification: the "classical-nonclassical polarity," represented by P.
View Article and Find Full Text PDFTwo-beam states obtained by partial photon-number-resolving detection in one beam of a multi-mode twin beam are experimentally investigated using an intensified CCD camera. In these states, sub-Poissonian photon-number distributions in one beam are accompanied by sub-shot-noise fluctuations in the photon-number difference of both beams. Multi-mode character of the twin beam implying the beam nearly Poissonian statistics is critical for reaching sub-Poissonian photon-number distributions, which contrasts with the use of a two-mode squeezed vacuum state.
View Article and Find Full Text PDFTo realize a stable single-longitudinal-mode (SLM) 1550-nm light source for the generation of non-classical states, a ring auto-pump-depleted singly resonant optical parametric oscillator (SRO) with the assistance of second-harmonic-wave generation (SHG) is designed and built in this Letter. A magnesium oxide doped periodically polarized lithium niobate (MgO:PPLN) crystal and a lithium triborate (LBO) crystal are employed as the optical parametric downconversion (OPDC) and SHG crystals, respectively. Especially, the introduced SHG can firstly increase the loss difference between the lasing and non-lasing modes so that the dual-mode or multi-mode coupling in the achieved SRO can be effectively eliminated and the stable SLM operation is achieved.
View Article and Find Full Text PDFMultimode bright squeezed vacuum is a non-classical state of light hosting a macroscopic photon number while offering promising capacity for encoding quantum information in its spectral degree of freedom. Here, we employ an accurate model for parametric down-conversion in the high-gain regime and use nonlinear holography to design quantum correlations of bright squeezed vacuum in the frequency domain. We propose the design of quantum correlations over two-dimensional lattice geometries that are all-optically controlled, paving the way toward continuous-variable cluster state generation on an ultrafast timescale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!