Collective dynamics of self-propelled sphere-dimer motors.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462023, India.

Published: February 2012

The collective dynamics of ensembles of chemically powered sphere dimer motors is investigated. Sphere dimers are self-propelled nanomotors built from linked catalytic and noncatalytic spheres. They consume fuel in the environment and utilize the resulting self-generated concentration gradients to produce directed motion along their internuclear axes. In collections of such motors, the individual motors interact through forces that arise from concentration gradients, hydrodynamic coupling, and direct intermolecular forces. Under nonequilibrium conditions it is found that the sphere dimer motors self-assemble into transient aggregates with distinctive structural correlations and exhibit swarming where the aggregates propagate through the system. The mean square displacement of a dimer motor in the ensemble displays short-time ballistic and long-time diffusive regimes and, for ensembles containing many motors, an increasingly prominent intermediate regime. The self-diffusion coefficient of a motor in a many-motor system behaves differently from that of an isolated motor, and the decay of orientational correlations is a nonmonotonic function of the number of motors. The results presented here illustrate the phenomena to be expected in applications, such as cargo transport, where many motors may act in consort.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.026121DOI Listing

Publication Analysis

Top Keywords

collective dynamics
8
motors
8
sphere dimer
8
dimer motors
8
concentration gradients
8
dynamics self-propelled
4
self-propelled sphere-dimer
4
sphere-dimer motors
4
motors collective
4
dynamics ensembles
4

Similar Publications

Genetic, natal and spatial drivers of social phenotypes in wild great tits.

J Anim Ecol

December 2024

Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK.

In social animals, group dynamics profoundly influence collective behaviours, vital in processes like information sharing and predator vigilance. Disentangling the causes of individual-level variation in social behaviours is crucial for understanding the evolution of sociality. This requires the estimation of the genetic and environmental basis of these behaviours, which is challenging in uncontrolled wild populations.

View Article and Find Full Text PDF

The intricate control of collective cell dynamics is crucial for enabling organismic development and tissue regeneration. Despite the availability of various in vitro and in vivo models, studies on tissue-scale cell dynamics and associated emergent properties in living systems remain methodically challenging. Here, we describe key advantages of using the adult zebrafish tailfin (caudal fin) as a robust in vivo model for dissecting millimeter-scale collective cell dynamics during regeneration and wound healing in a complex tissue.

View Article and Find Full Text PDF

Toward Collective Chemistry under Strong Light-Matter Coupling.

J Phys Chem Lett

December 2024

Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China.

Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime.

View Article and Find Full Text PDF

Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.

View Article and Find Full Text PDF

Objective: This study presents the personal experience of a 19-year-old student who fled the war in Ukraine, journeyed across multiple countries, and ultimately enrolled in a university psychology program in Croatia.

Methods: A collaborative autoethnographic approach was employed to explore the student's experience as a war refugee, traversing Europe, and beginning university life in a foreign country. Data were collected through the student's reflective writing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!