We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.021501DOI Listing

Publication Analysis

Top Keywords

potential energy
32
energy landscape
20
dynamics
9
dynamics glass-forming
8
glass-forming liquids
8
liquids properties
8
potential
8
properties potential
8
energy
8
minima potential
8

Similar Publications

Polyphosphate kinases (PPK) play crucial roles in various biological processes, including energy storage and stress responses, through their interaction with inorganic polyphosphate (polyP) and the intracellular nucleotide pool. Members of the PPK family 2 (PPK2s) catalyse polyP‑consuming phosphorylation of nucleotides. In this study, we characterised two PPK2 enzymes from Bacillus cereus (BcPPK2) and Lysinibacillus fusiformis (LfPPK2) to investigate their substrate specificity and potential for selective nucleotide synthesis.

View Article and Find Full Text PDF

Identification of promising dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B inhibitors from selected terpenoids through molecular modeling.

Bioinform Adv

December 2024

Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.

Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.

Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.

View Article and Find Full Text PDF

Background: The microbiome has been identified as a contributor to bone quality. As skeletal health is critical to success of orthopedic surgery, the gut microbiome may be a modifiable factor associated with postoperative outcomes. For spine fusion surgery in particular, bone formation and sufficient bone mineral density are essential for successful outcomes.

View Article and Find Full Text PDF

Project-based learning, with its emphasis on 'learning by doing', is the dominant teaching method in industrial design. Learners are supposed to be motivated to tackle complex problems such as those in the dynamic field of sustainability. However, it is still unclear how the process of increasing motivation within projects can be systematically targeted for specific sustainability challenges and directed towards potential later pro-environmental behavior.

View Article and Find Full Text PDF

Introduction: Chlorfenapyr, a broad-spectrum insecticide and acaricide of the pyrrole-class pesticides, can induce dizziness, fatigue, profuse sweating, and altered consciousness by interfering with cell energy metabolism. However, chlorfenapyr-related rhabdomyolysis has rarely been reported.

Case Presentations: Patient 1 was a healthy 26-year-old man who ingested approximately 30 mL of chlorfenapyr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!