It has been alleged in several papers that the so-called delayed continuous-time random walks (DCTRWs) provide a model for the one-dimensional telegraph equation at microscopic level. This conclusion, being widespread now, is strange, since the telegraph equation describes phenomena with finite propagation speed, while the velocity of the motion of particles in the DCTRWs is infinite. In this paper we investigate the accuracy of the approximations to the DCTRWs provided by the telegraph equation. We show that the diffusion equation, being the correct limit of the DCTRWs, gives better approximations in L(2) norm to the DCTRWs than the telegraph equation. We conclude, therefore, that first, the DCTRWs do not provide any correct microscopic interpretation of the one-dimensional telegraph equation, and second, the kinetic (exact) model of the telegraph equation is different from the model based on the DCTRWs.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.021150DOI Listing

Publication Analysis

Top Keywords

telegraph equation
28
continuous-time random
8
random walks
8
provide model
8
model telegraph
8
equation
8
dctrws provide
8
one-dimensional telegraph
8
telegraph
7
dctrws
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!