A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microscopic approach to nonlinear reaction-diffusion: the case of morphogen gradient formation. | LitMetric

Microscopic approach to nonlinear reaction-diffusion: the case of morphogen gradient formation.

Phys Rev E Stat Nonlin Soft Matter Phys

Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, Code Postal 231, B-1050 Bruxelles, Belgium.

Published: February 2012

We develop a microscopic theory for reaction-diffusion (RD) processes based on a generalization of Einstein's master equation [Ann. Phys. 17, 549 (1905)] with a reactive term and show how the mean-field formulation leads to a generalized RD equation with nonclassical solutions. For the nth-order annihilation reaction A+A+A+···+A→0, we obtain a nonlinear reaction-diffusion equation for which we discuss scaling and nonscaling formulations. We find steady states with solutions either exhibiting long-range power-law behavior showing the relative dominance of subdiffusion over reaction effects in constrained systems or, conversely, solutions that go to zero a finite distance from the source, i.e., having finite support of the concentration distribution, describing situations in which diffusion is slow and extinction is fast. Theoretical results are compared with experimental data for morphogen gradient formation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.021126DOI Listing

Publication Analysis

Top Keywords

nonlinear reaction-diffusion
8
morphogen gradient
8
gradient formation
8
microscopic approach
4
approach nonlinear
4
reaction-diffusion case
4
case morphogen
4
formation develop
4
develop microscopic
4
microscopic theory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!