We implement differential interference contrast (DIC) microscopy using high-speed synthetic aperture imaging that expands the passband of coherent imaging by a factor of 2.2. For an aperture synthesized coherent image, we apply for the numerical post-processing and obtain a high-contrast DIC image for arbitrary shearing direction and bias retardation. In addition, we obtain images at different depths without a scanning objective lens by numerically propagating the acquired coherent images. Our method achieves high-resolution and high-contrast 3-D DIC imaging of live biological cells. The proposed method will be useful for monitoring 3-D dynamics of intracellular particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380814PMC
http://dx.doi.org/10.1117/1.JBO.17.2.026003DOI Listing

Publication Analysis

Top Keywords

differential interference
8
interference contrast
8
synthetic aperture
8
aperture imaging
8
three-dimensional differential
4
contrast microscopy
4
microscopy synthetic
4
imaging
4
imaging implement
4
implement differential
4

Similar Publications

Beyond the more common TFE3 fusion partners PRCC, ASPSCR1, and SFPQ, additional less common fusion partners of TFE3-rearranged renal cell carcinoma (RCC) have been described. Herein, we present an example of TFE3-rearranged renal cell carcinoma harboring fusion partner MAPK1IP1L, a rare rearrangement with only one other reported tumor found in the literature. The currently reported TFE3-rearranged RCC demonstrates unique histological features compared to the previously reported tumor including dense eosinophilic cytoplasm and nuclear pseudoinclusions (corroborated by electron microscopic evaluation), with features not typically seen in other TFE3-rearranged RCCs.

View Article and Find Full Text PDF

Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.

View Article and Find Full Text PDF

A solution to address the issues of environmental light interference in Remote Photoplethysmography (rPPG) methods is proposed in this paper. First, signals from the face's region of interest (ROI) and background noise signals are simultaneously collected, and the two signals are processed by a differential to obtain a more accurate rPPG signal. This method effectively suppresses background noise and enhances signal quality.

View Article and Find Full Text PDF

Aiming at the control challenges faced by unmanned surface vessels (USVs) in complex environments, such as nonlinearities, parameter uncertainties, and environmental perturbations, we propose a non-singular terminal integral sliding mode control strategy based on an extended state observer (ESO). The strategy first employs a third-order linear extended state observer to estimate the total disturbances of the USV system, encompassing both external disturbances and internal nonlinearities. Subsequently, a backstepping sliding mode controller based on the Lyapunov theory is designed to generate the steering torque control commands for the USV.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!