Multiscale dynamics in communities of phase oscillators.

Chaos

Department of Physics and Astronomy, Carleton College, Northfield, Minnesota 55057, USA.

Published: March 2012

We investigate the dynamics of systems of many coupled phase oscillators with heterogeneous frequencies. We suppose that the oscillators occur in M groups. Each oscillator is connected to other oscillators in its group with "attractive" coupling, such that the coupling promotes synchronization within the group. The coupling between oscillators in different groups is "repulsive," i.e., their oscillation phases repel. To address this problem, we reduce the governing equations to a lower-dimensional form via the ansatz of Ott and Antonsen, Chaos 18, 037113 (2008). We first consider the symmetric case where all group parameters are the same, and the attractive and repulsive coupling are also the same for each of the M groups. We find a manifold L of neutrally stable equilibria, and we show that all other equilibria are unstable. For M ≥ 3, L has dimension M - 2, and for M = 2, it has dimension 1. To address the general asymmetric case, we then introduce small deviations from symmetry in the group and coupling parameters. Doing a slow/fast timescale analysis, we obtain slow time evolution equations for the motion of the M groups on the manifold L. We use these equations to study the dynamics of the groups and compare the results with numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3672513DOI Listing

Publication Analysis

Top Keywords

phase oscillators
8
group coupling
8
oscillators
5
groups
5
coupling
5
multiscale dynamics
4
dynamics communities
4
communities phase
4
oscillators investigate
4
investigate dynamics
4

Similar Publications

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.

View Article and Find Full Text PDF

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Rainfall prediction is a crucial aspect of climate science, particularly in monsoon-influenced regions where accurate forecasts are essential. This study evaluates rainfall prediction models in the Eastern Thailand by examining an optimal lag time associated with the Oceanic Niño Index (ONI). Five deep learning models-RNN with ReLU, LSTM, GRU (single-layer), LSTM+LSTM, and LSTM+GRU (multi-layer)-were compared using mean absolute error (MAE) and root mean square error (RMSE).

View Article and Find Full Text PDF

A Drosophila cardiac myosin increases jump muscle stretch activation and shortening deactivation.

Biophys J

January 2025

Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA. Electronic address:

Stretch activation (SA), a delayed increase in force production following rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle (IFM). SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!