We present incoherent quasi-elastic neutron scattering measurements in a wave vector transfer range from 0.4 Å(-1) to 1.6Å (-1) on liquid n-hexane confined in cylindrical, parallel-aligned nanochannels of 6 nm mean diameter and 260 μm length in monolithic, mesoporous silicon. They are complemented with, and compared to, measurements on the bulk system in a temperature range from 50 K to 250 K. The time-of-flight spectra of the bulk liquid (BL) can be modeled by microscopic translational as well as fast localized rotational, thermally excited, stochastic motions of the molecules. In the nano-confined state of the liquid, which was prepared by vapor condensation, we find two molecular populations with distinct dynamics, a fraction which is immobile on the time scale of 1 ps to 100 ps probed in our experiments and a second component with a self-diffusion dynamics slightly slower than observed for the bulk liquid. No hints of an anisotropy of the translational diffusion with regard to the orientation of the channels' long axes have been found. The immobile fraction amounts to about 5% at 250 K, gradually increases upon cooling and exhibits an abrupt increase at 160 K (20 K below bulk crystallization), which indicates pore freezing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3696684 | DOI Listing |
J Phys Chem Lett
January 2025
Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, , which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Institut Max von Laue-Paul Langevin, 71 Av. des Martyrs, 38042 Grenoble, France.
Liquid-liquid phase separation (LLPS) constitutes a crucial phenomenon in biological self-organization, not only intervening in the formation of membraneless organelles but also triggering pathological protein aggregation, which is a hallmark in neurodegenerative diseases. Employing incoherent quasi-elastic neutron spectroscopy (QENS), we examine the short-time self-diffusion of a model protein undergoing LLPS as a function of phase splitting and temperature to access information on the nanosecond hydrodynamic response to the cluster formation both within and outside the LLPS regime. We investigate the samples as they dissociate into microdroplets of a dense protein phase dispersed in a dilute phase as well as the separated dense and dilute phases obtained from centrifugation.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.
J Chem Phys
October 2024
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, USA.
We present a quasi-elastic neutron scattering study of liquid deuterium hydride carried out using the Disk Chopper Spectrometer at the National Institute of Standards and Technology. Under saturated vapor pressure, the self-diffusion constant of deuterium hydride obeys an Arrhenius law D=D0exp-EA/kBT, where the prefactor D0 is given by D0=9.5±1.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
STFC Rutherford Appleton Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
Protein dynamics play a vital role in biology. Quasi elastic neutron scattering (QENS) is an ideal method to access these dynamics. To isolate protein dynamics, it is important to separate the signal of the buffer and the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!