We have previously reported that the cytochrome b6/f complex may be involved in the redox activation of light harvesting chlorophyll-a/b protein complex of photosystem II (LHCII) kinase in higher plants (Gal, A., Shahak, Y., Schuster, G., and Ohad, I. (1987) FEBS Lett. 221, 205-210). The aim of this work was to establish whether a relation between the cytochrome b6/f and LHCII kinase activation can be demonstrated in vitro. Preparations enriched in cytochrome b6/f obtained from spinach thylakoids by detergent extraction and precipitation with ammonium sulfate followed by different procedures of purification, contained various amounts of LHCII kinase activity. Analysis of the cytochrome b6/f content and kinase activity of fractions obtained by histone-Sepharose and immunoaffinity columns, immunoprecipitation and sucrose density centrifugation, indicate functional association of kinase and cytochrome b6/f. Phosphorylation of LHCII by fractions containing both cytochrome b6/f and kinase was enhanced by addition of plastoquinol-1. LHCII phosphorylation and kinase activation could be obtained in fractions prepared by use of beta-D-octyl glucoside but not when 3-[(cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate was used as the solubilizing detergent. Kinase activity could be inhibited by halogenated quinone analogues (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2,3-diiodo-5-t-butyl-p-benzoquinone) known to inhibit cytochrome b6/f activity. However, kinase activity was inhibited by these analogues in all preparations including those which could not phosphorylate LHCII. We thus propose that the redox activation of LHCII phosphorylation is mediated by kinase interaction with cytochrome b6/f while the deactivation may be related to a distinct quinone binding site of the enzyme molecule.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!