Eosin Y triplet state as a probe of spatial heterogeneity in microcrystalline cellulose.

Photochem Photobiol

INQUIMAE/DQIAyQF, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Buenos Aires, Argentina.

Published: January 2013

The photophysical behavior of eosin Y adsorbed onto microcrystalline cellulose was evaluated by reflectance spectroscopy, steady-state fluorescence spectroscopy and laser induced time-resolved luminescence. On increasing the concentration of the dye, small changes in absorption spectra, fluorescence redshifts and fluorescence quenching are observed. Changes in absorption spectra point to the occurrence of weak exciton interactions among close-lying dye molecules, whereas fluorescence is affected by reabsorption and excitation energy trapping. Phosphorescence decays are concentration independent as a result of the negligible exciton interaction of dye pairs in the triplet state. Lifetime distribution and bilinear regression analyses of time-resolved phosphorescence and delayed fluorescence spectra reveal the existence of two different environments: long-lived, more energetic triplet states arise from dyes tightly entrapped within the cellulose chains, while short-lived, less-energetic states result from dyes in more flexible environments. Stronger hydrogen bond interactions between the dye and cellulose hydroxyl groups lead in the latter case to a lower triplet energy and faster radiationless decay. These effects, observed also at low temperatures, are similar to those encountered in several amorphous systems, but rather than being originated in changes in the environment during the triplet lifetime, they are ascribed in this case to spatial heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1751-1097.2012.01152.xDOI Listing

Publication Analysis

Top Keywords

triplet state
8
spatial heterogeneity
8
microcrystalline cellulose
8
changes absorption
8
absorption spectra
8
fluorescence
5
eosin triplet
4
state probe
4
probe spatial
4
heterogeneity microcrystalline
4

Similar Publications

The assessment of electronic structure descriptions utilized in the simulation of the ultrafast excited-state dynamics of Fe(II) complexes is presented. Herein, we evaluate the performance of the RPBE, OPBE, BLYP, B3LYP, B3LYP*, PBE0, TPSSh, CAM-B3LYP, and LC-BLYP (time-dependent) density functional theory (DFT/TD-DFT) methods in full-dimensional trajectory surface hopping (TSH) simulations carried out on linear vibronic coupling (LVC) potentials. We exploit the existence of time-resolved X-ray emission spectroscopy (XES) data for the [Fe(bmip)] and [Fe(terpy)] prototypes for dynamics between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states, which serve as a reference to benchmark the calculations (bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, terpy = 2,2':6',2″-terpyridine).

View Article and Find Full Text PDF

With the rapid development of thermally activated delayed fluorescence (TADF) materials, achieving efficient reverse intersystem crossing (RISC) to mitigate triplet-triplet annihilation has emerged as a prominent research focus. This study investigates five derivative molecules, featuring varied bridging atoms/groups (O, S, Se, -CH-), designed from the reported TADF molecule with through-space charge transfer (TSCT) properties. Utilizing time-dependent density functional theory coupled with a PCM solution model, their excited state behaviors were simulated in a toluene environment.

View Article and Find Full Text PDF

[n]Peri-acenes ([n]PA) have attracted great interest as promising candidates for nanoelectronics and spintronics. However, the synthesis of large [n]PA (n > 4) is extremely challenging due to their intrinsic open-shell radical character and high reactivity. Herein, we report the successful synthesis and isolation of a derivative (1) of peri-hexacene in crystalline form.

View Article and Find Full Text PDF

Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.

Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.

View Article and Find Full Text PDF

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!