Photoelectric charging experiments measure heterogeneous uptake coefficients for pyrene on model marine aerosol particles, including NaCl, NaNO(3), and MgCl(2). The analysis employs a multilayer kinetic model that contains adsorption and desorption rate constants for the bare aerosol surface and for pyrene-coated surfaces. First coating the aerosol particles with a pyrene layer and following the desorption using both t-DMA and photoelectric charging yields the desorption rate constants. Separate experiments monitor the increase in surface coverage of initially bare aerosol particles after exposure to pyrene vapor in a sliding-injector flow tube. Analyzing these data using the multilayer model constrained by the measured desorption rate constants yields the adsorption rate constants. The calculated initial heterogeneous uptake coefficient, γ(0)(295 K), is 1.1 × 10(-3) for NaCl, 6.6 × 10(-4) for NaNO(3), and 6.0 × 10(-4) for MgCl(2). The results suggest that a free energy barrier controls the uptake rate rather than kinematics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp3014145 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.
View Article and Find Full Text PDFToxics
December 2024
Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany.
Zinc sulphide is a widely used inorganic powder, and its production has reached quantities greater than 1000 t/year. Therefore, in accordance with OECD guideline 436, an acute inhalation test was implemented to provide more accurate data. This study is crucial for ensuring the safety of workers exposed to zinc sulphide dust and complying with regulatory requirements for REACH.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners - Epworth, Melbourne, VIC, Australia.
Mitigation measures against infectious aerosols are desperately needed. We aimed to: 1) compare germicidal ultraviolet radiation (GUV) at 254 nm (254-GUV) and 222 nm (222-GUV) with portable high efficiency particulate air (HEPA) filters to inactivate/remove airborne bacteriophage ϕX174, 2) measure the effect of air mixing on the effectiveness of 254-GUV, and 3) determine the relative susceptibility of ϕX174, SARS-CoV-2, and Influenza A(H3N2) to GUV (254 nm, 222 nm). A nebulizer generated ϕX174 laden aerosols in an occupied clinical room (sealed-low flow).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!